\qquad

Dec - 2019
 M.Sc (Mathematics) III Semester(Reappear)

Mechanics (MTH-513)
M.Marks : 60

Time : $\mathbf{3}$ hours

Note: Part I consists of Question no 1 which is compulsory and attempt any 4 questions from Part II

Part I

Q1 a) Set up the Lagrangian Function for a two dimensional Harmonic oscillator.
b) Define Equimomental Surfaces.
c) Derive Equation of Motion in Poisson Bracket form.
d) Derive an Expression for Generalised potential.
e) A Circular disc of mass M and radius r is set rolling on a table. If v be its linear velocity, show that its total kinetic energy is given by $3 / 4 \mathrm{Mv}^{2}$.
f) Explain briefly Second Form of Generating Function $F_{2}(q, P, t)$.
g) State Hamilton's Principle of Least action.
h) Show that if t does not occur in Lagrangian L, then the Hamiltonian H, will also not involve t .
i) What are the advantages of using Hamiltonian approach.
j) What are the conditions for a transformation to be Canonical.

Part II

Q2 a) State and Prove Theorem of Perpendicular Axis for a Rigid Body.
b) Determine the Moment of Inertia of a Solid Cylinder about its own axis and an axis passing through its centre of mass but perpendicular to its length.

Q3 a) Determine the Equation of Motion of a Particle falling freely under the gravity of
Earth (through Hamiltonian Approach)
b) Deduce Lagrangian function and the equation of motion for a case of a cylinder rolling down an inclined plane.

Q4.a) State and Prove Jacobi's Idendity.
b) A partical of mass m can slide without friction on the inside of a small tube which is bent in the form of a circle of radius r. The tube rotates about a vertical diameter with the constant angular velocity ω. Write the differential equation of motion.

Q5 a) Show that the transformation $P=\boldsymbol{q} \boldsymbol{\operatorname { c o t }} \boldsymbol{p}, Q=\log \left(\frac{\sin p}{\boldsymbol{q}}\right)$ is Canonical. Show that the Generating Function is $F=e^{-Q}\left(1-q^{2} e^{2 Q}\right)^{1 / 2}$.
b) State and prove Poincare's Integral invariant theorem.

Q6 a) Prove the invariance of Lagrange Brackets with respect to Canonical Transformation.
b) Solve the Hamilton- Jacobi Equation for Two- Dimensional Projectile Motion

Q7 a) Derive an Expression for Potential of a thin spherical shell.
b) A self attracting sphere of uniform density $\rho \&$ radius ' a ' changes to one of uniform density \& radius ' b '. Show that the work done by its mutual attractive forces is given by $\frac{3}{5} M^{2}\left(\frac{1}{b}-\frac{1}{a}\right)$, where M is mass of sphere.

