> Mar. 2022
> M.Sc(Maths)- I SEMESTER
> Complex Analysis(MATH21-704)

Time: 90 Minutes
Max. Marks:25
Instructions: 1. It is compulsory to answer all the questions (1 marks each) of Part -A in short.
2. Answer any three questions from Part - B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1 (a) State necessary and sufficient condition for $f(z)$ to be analytic.
(b) Prove that z^{2} is continuous for every value of z.
(c) Prove that an analytic function with constant modulus in a domain is constant.
(d) Find the radius of convergence of the power series $a_{n}=\sum_{n=0}^{\infty} 2^{\sqrt{n}}(z)^{n}$
(e) Prove that $z^{8}+3 z^{3}+7 z+5=0$ has exactly two zeroes in the first quadrant.
(f) What kind of singularity the function $f(z)=\sin \left(\frac{1}{z-1}\right)$ have at $z=1$?
(g) Find the residue of $\frac{z^{3}}{z^{2}-1}$ at $z=\infty$?
(h) Find the critical points of the bilinear transformation $w=T(z)=\frac{a z+b}{c z+d}$
(i) Find the value of $\int_{C} \frac{5}{(z-2)(z-3)} d z$ where C is $|z|=1$
(j) State Liouville's theorem.

PART -B

Q2 (a) Show that the function $u=\frac{1}{2}\left(\log \left(x^{2}+y^{2}\right)\right)$ is harmonic and determine its harmonic conjugate.
(b) Using Cauchy Integral Formula, evaluate $\int_{c} \frac{e^{a z} d z}{(z-\pi i)}$ where C is the ellipse

$$
\begin{equation*}
|z-2|+|z+2|=6 . \tag{2}
\end{equation*}
$$

Q3 (a) State and prove Morera's theorem.
(b) State and prove Maximum Modulus Principle .

Q4 Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in a laurent's series valid for
(a) $1<|z|<3$
(b) $0<|z+1|<2$

Q5 (a) Solve $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}}$ by Residue theorem
(b) State and prove Rouche's theorem

Q6 (a) Find the fixed points and the normal form of the following bilinear transformations
(i) $w=\frac{z}{z-2}$
(ii) $w=\frac{(2+i) z-2}{z+i}$
(b) Find transformation which maps outside $|z|=1$, on the half plane $R(w) \geq 0$ so
that the points $z=1,-i,-1$ correspond to $w=i, 0,-i$ respectively.

