753102
Mar. 2022
M.Sc. (MATHS) - I SEMESTER Abstract Algebra (MATH21-702)

Instructions :

1. It is compulsory to answer all the questions (1 mark each) of Part-A in short.
2. Answer any three questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define composition series with an example.
(b) Explain permutation group.
(c) If $0(G)=p^{2}$, where p is prime number, then G is abelian.
(d) Find all non-isomorphic abelian group of order 25
(e) State Sylow Third Theorem.
(f) Let R denote the set of all real-valued continuous functions on $[0,1]$. Let $f, g \in R$. Define

$$
\begin{align*}
& (f+g)(x)=f(x)+g(x), \\
& (f \cdot g)(x)=f(x) \cdot g(x), \quad \forall x \in[0,1] . \tag{1}
\end{align*}
$$

Then, R is a commutative ring with unity.
(g) Prove or disprove that the union of two ideals of a ring R is an ideal of R.
(h) Is Unique Factorization Domain is Principal Ideal Domain. Justify your answer.
(i) Prove or disprove that every subring of a ring R is ideal of ring R.
(j) Is $f(x)=x^{2}-4 x+2$ irreducible over Q. Justify your answer.

PART-B

2. (a) Prove that quotient of solvable groups are solvable.
(b) If $O(G)=255$, where G is a group. Then, show that G is abelian.
3. (a) Prove that $O(G)=108$ cannot simple.
(b) Let R be the ring of all real valued continuous functions on $[0,1]$. Show that the set $S=\left\{f \in R: f\left(\frac{1}{2}\right)=0\right\}$ is an ideal of R.
4. If G is a group of order 231, prove that the 11-Sylow subgroup is in the centre of G.
5. Find a polynomial of degree 3 irreducible over the ring of integers $Z_{3}, \bmod 3$. Use it to construct a field having 27 elements.
6. (a) Prove or disprove that $Z[\sqrt{-6}]$ is a U.F.D. (Unique Factorization Domain).
(b) Show that the ideal
$A=\{x f(x)+2 g(x): f(x), g(x) \in Z[x]\}$
is a maximal ideal of $Z[x]$.
