YMCA UNIVERSITY OF SCIENCE AND TECH., FARIDABAD

M.Sc EXAMINATION (UNDER CBS), Dec-2017

TOPOLOGY(MT 511)

Time-3 Hrs

M.Marks:75

NOTE: 1.It is compulsory to answer the questions of Part -1.

1. Answer any four questions from Part -2 in detail.

<u>Part 1</u>

Q1 All Part 1 Questions are compulsary

- a) Define the term open cover and sub cover.
- b) Define Co countable topology and co finite topology.
- c) Show that any discrete space is locally compact
- d) State Urysohn's Lemma.
- e) Show that two open subsets of a topologicals space are separated iff they are disjoint.
- f) Show that $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
- g) Define stronger and weaker topologies.
- h) Give example of T_1 space which is not T_2 .
- i) Define completely regular space and tychonov space.
- i) Define derived set and dense set. [1.5*10=15]

Part 2 (Attempt any four)

Q1(a)Let X be a topological space, let $A \subseteq X$ then $A \cup D(A)$ is a closed set of X			
	[7]		
QI(b) Give an example of a topological space that is not second countable	[8]		
e ser and a ser ser a ser a	. · .		
$Q\mathbf{Z}(a)$ Prove that components of totally disconnected space are its points.	[7]		
$Q_{3}(b)$ Define locally compact space and show that every compact topological	space		
is locally compact. Is the converse true? Justify.	[8]		
the state offense is closed	[7]		
Qa(a) Prove that every compact subset of Hausdroff space is closed.			
Q4(b) State and prove Tietzes Extension Theorem.	[8]		
for a second state of the	[7]		
Q (a) Prove that a normal space is completely regular iff it is regular.			
Q 4 (b) Show that the closure of a connected set is connected.	[8]		

Q 🎜 (a) State and prove Heine Borel Theorem.	[7]		
(b) Show that intersection of two topologies is also a topolog	у.	[8]	

Q(a) Prove that the product of any non empty class of totally disconnect	ted space is	
totally disconnected.	[7]	
Q4(b) Prove that complete regularity is a topological property.	[8]	

.

.