YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD

M.Sc. Mathematics, I SEMESTER

Ordinary Differential Equations (MATH17-103)

Time: 3 Ho	NUTS	Max. Marks:	: 75
Instruction	 It is compulsory to answer all the questions (1.5 marks each) of Part -A in short. Answer any four questions from Part -B in detail. Different sub-parts of a question are to be attempted adjacent to each other. 		
	PART –A		
Q1 (a)	Analyse the ordinary and singular points of $(x - 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \frac{1}{x}y = 0.$	(1.5)
(b)	Find wronskian of $6x, 6x^2, 6x^4$ ($x \neq 0$)	((1.5)
(c)	Solve (D ² -2D-3) $y = 2e^x - 10 \sin x$	((1.5)
(d)	Solve $(D^2-6D+8) = 0$, $y(0)=1,y'(0)=6$.	·	(1.5)
(e)	Find the characteristic values of $\frac{dx}{dt} = 6x - 3y$, $\frac{dy}{dt} = 2x + y$.		(1.5)
(f)	Find adjoint equation of $t^2 \frac{d^2x}{dt^2} + 7t \frac{dx}{dt} + 8x = 0$.		(1.5)
(g)	If the roots of characteristic equation are pure imaginary then explain nat	ure and	(1.5)
	stability of critical points:		
(h)	Solve $((D^4 - 16)y = x^2 sin 2x)$		(1.5
(i)	Define Lipschitz condition w.r.t. y.		(1.5
(j)	State Sturm separation theorem.		(1.5
	PART-B		
Q2 (a)	Solve by method of successive approximations the first three approximation $\frac{dy}{dx} = 1 + xy^2$, $y(0) = 0$.	15	(7
(b)	$\frac{dx}{dx} = 1 + xy^{2}, y(0) = 0.$ Solve by Frobenius method $2x^{2}y'' + xy' - (x+1)y = 0$		(8
Q3 (a)	State and prove Sturm comparison theorem.		(7

(b) Find eigen values and eigen functions of Sturm Liouville problem $y^{+}+\lambda y = 0$, (8) y(0) = 0, y(L) = 0, L > 0.

- Q4 (a) Find power series solution of $xy^{+}y^{+}2y=0$, $y(1)=1,y^{+}(1)=2.$ (7)
 - (b) Solve the Bessel equation $x^2y'' + xy' + (x^2 n^2)y = 0$ in series, taking 2n as (8) non-integral.
- Q5 (a) Explain with proper figure , when an isolated critical point is called (i) center (7) (ii) saddle point (iii) node. (8)
 - (b) Determine the nature of critical point (0.0) of the linear autonomous system $\frac{dx}{dt} = y - x^2$, $\frac{dy}{dt} = 8x - y^2$. construct a Liapunov function and determine whether the critical points of system are stable or not.
- Q6 (a) Determine $\begin{pmatrix} e^t & e^{2t} & e^{2t} \\ e^t & -e^{2t} & 0 \\ 3e^t & 0 & e^{2t} \end{pmatrix}$ is a fundamental solution of $\frac{dx}{dt} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{pmatrix} x$. (5)
 - (b) State the fundamental existence and uniqueness theorem, prove the uniqueness of solution the initial value problem.
 (7)
- Q7 (a) State and prove Cauchy Peano theorem.
 - (b) Use Cauchy's Euler approximation method to solve $\frac{dy}{dx} = x 2y$, y(0) = 1 evaluate values of y at x=0.1,x=0.2,x=0.3 and 0.4 using h=0.1. Obtain results to three figures (8) after the decimal points.
