
DESIGN OF TEST CASE PRIORITIZATION

TECHNIQUES FOR OBJECT ORIENTED

SYSTEMS

 THESIS

Submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSHOPHY

to

J. C. BOSE UNIVERSITY OF SCIENCE & TECHNOLOGY,

YMCA, FARIDABAD

by

VEDPAL

Registration No: Ph.D-12-2K12

Under the Supervision of

Dr. NARESH CHAUHAN

PROFESSOR

Department of Computer Engineering

Faculty of Engineering and Technology

J. C. Bose University of Science &Technology, YMCA, Faridabad

Sector-6, Mathura Road, Faridabad, Haryana, INDIA

APRIL, 2019

ii

Dedicated

to

My Parents

iii

CANDIDATE’S DECLARATION

I hereby declare that this thesis entitled “DESIGN OF TEST CASE

PRIORITIZATION TECHNIQUES FOR OBJECT ORIENTED SYSTEMS”

being submitted in fulfillment of requirement for the award of Degree of Doctor of

Philosophy in the Department of Computer Engineering under Faculty of Engineering

and Technology of J. C. Bose University of Science and Technology, YMCA,

Faridabad, during the academic year March 2013 to April 2019, is a bonafide record

of my original work carried out under the guidance and supervision of DR. NARESH

CHAUHAN, PROFESSOR, DEPARTMENT OF COMPUTER ENGINEERING

and has not been presented elsewhere.

I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other

university.

(VEDPAL)

 Registration No: Ph.D-12-2K12

iv

CERTIFICATE

This is to certify that the thesis titled “DESIGN OF TEST CASE

PRIORITIZATION TECHNIQUES FOR OBJECT ORIENTED SYSTEMS”

submitted in fulfillment of the requirements for the award of Degree of Doctor of

Philosophy in Department of Computer Engineering under Faculty of Engineering

and Technology of J.C. Bose University of Science & Technology, YMCA,

Faridabad, during the academic year March 2013 to April 2019, is a bonafide record

of work carried out under my guidance and supervision.

I further declare that to the best of my knowledge, the thesis does not contain part of

any work which has been submitted for the award of any degree either in this

university or in any other university.

DR. NARESH CHAUHAN

Professor

Department of Computer Engineering

Faculty of Engineering and Technology

YMCA University of Science & Technology Faridabad

Date:

The Ph.D. viva-voce examination of Research Scholar Vedpal (Ph.D – 12-2K12) has

been held on ………………………….

(Signature of Supervisor) (Signature of Chairman) (Signature of External Examiner)

v

 ACKNOWLEDGEMENTS

First of all, I would like to thank God, the Almighty, for providing enough courage

and his blessings to me for completion of this thesis. I have experienced your

guidance every day.

I would like to express my sincere gratitude to my thesis supervisor, Dr. Naresh

Chauhan, for his tremendous guidance. I would like to thank him for encouraging my

research work and for allowing me to grow as a researcher. The advices given by him

related to my research work as well as on my career have been priceless.

I am grateful to Late Prof. A. K. Sharma for his encouragement and motivation for

the completion of this work. I would also like to special thank Dr. C.K. Nagpal, Dr.

Komal Kumar Bhatia, Dr. Atul Mishra and Dr. Manjeet Singh for their valuable

advices and motivation for accomplishing this task.

I am also very thankful to Dr. Harish Kumar, Dr. Neelam Duhan and Dr. Rashmi

Popli for their continuous support and encouragement to complete my research work.

I would like to thank Sh. Sushil Kumar , Sh. Umesh Kumar, Sh. Krishan

Bhardwaj , Sh. Neeraj Parashar, Sh. Sanjay for always providing their support

and necessary resources for the completion of this thesis.

I also want to deliver my thanks to faculty members of Computer Engineering and

Computer Applications departments for their support and cooperation. Although it is

not possible to name individual, I cannot forget my well-wishers for their persistent

support and cooperation. I am also thankful to all my students who helped me directly

or indirectly in completing my research work.

A special thanks to my family. It is not possible to explain in words that how I am

thankful to my mother Late Smt. Sheela Devi, my father, Sh. Raghubir Singh, my

uncle Late Sh. Om Prakash, aunty Smt. Raja Bala, mother – in law Smt. Raj

Kumari and my father – in- law Sh. Pawan Kumar. I am grateful to my brother in

law Sh. Raj Kumar for his blessings.

vi

I would also like to thank my wife Sonika for her support. Finally I want to express

my thanks to my beloved daughter Mishita for being a good girl always cheering me

up.

Thanks to all of you!

(VEDPAL)

vii

ABSTRACT

Software Testing is an important activity during the development of the software. It

helps to ensure that the developed software provides all the functionality in an

efficient manner as desired by the customer. In past three decades, the object oriented

programming system is preferable for developing the software due to its features.

However all the concepts of conventional testing loses their meaning in the testing of

the object oriented software. The testing of the object oriented software has various

issues like basic unit for testing, inheritance, polymorphism, white box testing,

integrated strategies, etc.

Further the testing of the object oriented software consumes a lot of time, efforts and

resources. To ensure the quality of software, the efficient test cases are designed and

executed. It is very difficult and costly to execute the large number of test cases. The

test cases should be executed in such a way that they find the maximum faults at

earlier stages. It is very costly and time consuming to detect and fix the bugs at later

stages. So the test cases should be ordered to detect the maximum faults by

consuming the less time and efforts. During the development of the software

customers requirements are volatile in nature and they are changing during the time.

By making any change in software, retesting of the software is required to assure that

the changes introduced in the software does not put any impact on the other part of the

software. It may be possible to add the new test cases to test the modified part of the

software. It is very hard to find the affected part of the software and to select the test

cases to execute the affected part of the software.

By concentrating on the difficulty possessed by the testing of the object oriented

software, prioritization of test cases should be performed to detect the maximum

faults which helps to reduce the testing time and cost. To prioritize the test cases some

factors are also required on the basis of which the selection and prioritization of the

test cases are performed. In this thesis, the test case prioritization techniques for the

object oriented software have been presented at the three levels. These levels are the

Unit and Integration testing, System testing and Regression testing.

viii

At Unit and Integration level the four test case prioritization technique have been

presented. The first technique prioritized the test cases on the basis of the cost and

code covered by the test cases. To determine the cost some factors have been

considered, which increase the cost in terms of the execution time and space. The

second technique prioritized the test cases on the basis of the structural analysis of the

object oriented software. The third technique prioritized the test cases on the basis of

method complexity. Some factors are considered to determine the complexity of the

method. The fourth technique prioritized the test cases on the basis of the analysis of

the coupling existing in the software. For the experimental verification and validation

all the four techniques have been applied on the software that are implemented in

object oriented programming paradigm.

At system level testing the whole software needs to be tested at various grounds like

load testing, stress testing, performance testing, etc. Resultant system testing has the

large numbers of the test cases. A multilevel test case prioritization for the system

testing of the object oriented software has been presented. In the presented technique

firstly the requirements are prioritized using the seven factors that are related to

requirement. After prioritization of the requirements the modules of the prioritized

requirements are prioritized using the four factors followed by the prioritizations of

test cases using six factors of the highest prioritized module. Similarly to reduce the

testing cost a cost reduction framework (CORFOOS) for the object oriented software

has been presented.

 At regression testing level three techniques have been presented. The first technique

determined the affected paths in software by incorporating the changes in the software

and selects the test cases corresponding to the determined paths. In the second level a

hierarchical regression test case prioritization for the object oriented software has

been presented. The presented technique firstly prioritized the classes on the basis of

the testing effort. After prioritizing the classes the test cases are prioritized on the

basis of the faults covered by the test cases in the past history. The third technique

prioritizes the regression test cases on the basis of some factors related to the past

testing history and coverage of the code in term of classes of the software which is

going to be retested after incorporating some modifications in it. All the techniques

have been validated by applying it on the software.

ix

This thesis focuses on the difficulties of the testing at the Unit & Integration level,

System level and Regression testing for the object oriented software. To remove all

the difficulties related to testing test case prioritization techniques for each level has

been designed. The presented techniques help to deliver the quality software by

consuming the less cost with in allocated time. For the applicability of the proposed

techniques these have been experimentally validated by applying them on the

software implemented in C++ and JAVA. The techniques have been compared with

the other existed similar existing techniques. The result shows the efficacy of the

proposed work.

x

TABLE OF CONTENTS

Dedication ii

Candidate’ Declaration iii

Certificate iv

Acknowledgements v

Abstract vii

Table of Contents x

List of Tables xv

List of Figures xix

List of Abbreviations xxii

CHAPTER I: INTRODUCTION 1-5

 1.1 Object Oriented Software Testing 1

 1.2 Test Case Prioritization 1

 1.3 Motivation and Research Objectives 2

 1.4 Challenges of Test Case Prioritization 4

 1.5 Organization of Thesis 5

CHAPTER II: LITERATURE REVIEW 7-48

 2.1 Introduction 7

 2.2 Impact Of Object Oriented Technology On Testing 8

 2.3 Requirement Testing 10

 2.4 Design Testing 10

 2.5 Base Classes Unit Testing 10

 2.5.1 Functional Testing of Methods 11

 2.5.2 Structural Testing of Methods 11

 2.5.3 Interaction Testing of the Method 11

 2.6 Derived Classes Unit Testing 11

 2.7 Testing Special Features of OOS 12

 2.7.1 Static Data members 12

 2.7.2 Function Pointers 12

 2.7.3 Structure as Data members 12

xi

 2.7.4 Nested Classes 13

 2.7.5 Members Access Control 13

 2.7.6 Composite Classes 14

 2.7.7 Abstract Class 14

 2.8 Integration Testing 14

 2.9 Integrated System Testing 15

 2.10 Levels Of Testing For Object Oriented Testing 16

 2.11 Object Oriented Testing Techniques 17

 2.11.1 Path Based Testing 17

 2.11.2 State Based Testing 17

 2.11.3 Class Level Testing 18

 2.12 Bug Classification Based on Criticality 18

 2.13 Object Oriented Design Principle 18

 2.14 Coupling in Object Oriented Software 19

 2.15 Program Slicing 21

 2.16 Test Case Prioritization 22

 2.17 Regression Testing 22

 2.18 Average Percentages of Faults Detected (APFD) 23

 2.19 Testing of Object Oriented Software Using Coupling 23

 2.20 Testing of Object Oriented Software Using Inheritance 26

 2.21 Testing of Object Oriented Software Using Slicing 28

 2.22 Model Based Testing of Object Oriented Software 28

 2.23 Testing of Object Oriented Software Using Metric 30

 2.24 Testing of Object Oriented Software Using Intermediate

Representation Of The Source Code

32

 2.25 Regression Testing Of Object Oriented System 33

 2.26 Test Case Prioritization For Object Oriented System 35

 2.27 Code Based Test Case Prioritization Techniques 37

 2.28 Factors Based Test Case Prioritization Technique 38

 2.29 Test Case Prioritization Based On Various Algorithms 41

 2.30 Test Case Prioritization Using Risk Factors 44

 2.31 Testing Tools Of Object Oriented System 45

 2.32 Conclusion 48

xii

CHAPTER III: UNIT & INTEGRATION TEST CASE PRIORITIZATION:

 PROPOSED WORK

51-100

 3.1 Introduction 51

 3.2 A Multi - Factored Cost and Code Coverage Based Test Case

Prioritization Technique for Object Oriented Software

(MFCCTCPTOOS)

52

 3.2.1 Considered Factors For Prioritizing Test Cases 53

 3.2.2 Result and Analysis 54

 3.2.3 Comparison of APFD Graphs of Prioritized and Non

Prioritized order of the Test Cases

58

 3.2.4 Effectiveness of the Proposed Approach 60

 3.3 A Structural Analysis Based Test Case Prioritization Technique

for Object Oriented Software (SATCPTOOS)

 60

 3.3.1 Representation of the Program in Intermediate Form 64

 3.3.2 Identification of Independent Paths 65

 3.3.3 Test Case Prioritization 65

 3.3.4 Result and Analysis 66

 3.4 Test Case Prioritization Technique for Object Oriented Software

using Method Complexity (TCPTOOSUMC)

74

 3.4.1 Result and Analysis 80

 3.5 A Coupling – Analysis Based Test Case Prioritization Technique

for Object Oriented Software (CATCPTOOS)

 88

 3.5.1 Determination of Interaction Coupling Existed in

Individual Classes

89

 3.5.2 Determination of Component and Inheritance Coupling

Between the Classes.

90

 3.5.3 Prioritization of the Combinations of Classes and

Individual Class

91

 3.5.4 Mapping of All Possible Combination of Classes and

Individual Classes with the Test Cases

91

 3.5.5 Prioritization of the Test Cases 91

 3.5.6 Algorithm of Proposed Approach (CATCPTOOS) 92

 3.5.7 Example 93

xiii

 3.5.8 Result and Analysis 96

 3.6 Conclusion 100

CHAPTER IV: SYSTEM TEST CASE PRIORITIZATION: PROPOSED 101-126

 WORK

 4.1 Introduction 101

 4.2 A Multilevel System Test Cases Prioritization Technique for Object

Oriented Software (MSTCPTOOS)

101

 4.2.1 Determination of the Weight for Considered Factors 102

 4.2.2 Factors Considered for Requirement Prioritization and

their Reasoning

103

 4.2.3 Factors Considered Prioritization of Module and their

Reasoning

105

 4.2.4 Factors Considered Prioritization of Test Cases and their

Reasoning

106

 4.2.5 The Predicted Important Value of all the factors 107

 4.2.6 Proposed Process of Test Case Prioritization 109

 4.2.7 Result and Analysis 111

 4.3 Cost Reduction Framework for Object Oriented System (CORFOOS) 116

 4.3.1 The Proposed Framework 116

 4.3.2 Requirement Analysis and Requirement Dependency

Graph

117

 4.3.3 Partition of Requirements by Mapping them with Past

Implemented Requirements

118

 4.3.4 Identification of Critical Requirements 120

 4.3.5 Complexity of Requirement 120

 4.3.6 Result And Analysis 123

 4.4 Conclusion 126

CHAPTER V: REGRESSION TEST CASE PRIORITIZATION: 127-201

 PROPOSED WORK

 5.1 Introduction 127

 5.2 Regression Test Selection for Object Oriented Systems Using

OPDG and Slicing Technique

 127

 5.2.1 Addition of Class 130

xiv

 5.2.2 Modification of Class 131

 5.2.3 Deletion of a Class 133

 5.2.4 Effectiveness of Proposed Approach 135

 5.2.5 Analysis of Proposed Approach 160

 5.3 A Faults – Severity based Regression Test Case Prioritization

Technique for Object Oriented Software (FSRTCPTOOS)

160

 5.3.1 First Level Prioritization 162

 5.3.2 Second Level Prioritization 163

 5.3.3 Proposed Fault Table (FSRTCPOOS) 165

 5.3.4 Experimental Evaluation and Analysis of Proposed

Work

 166

 5.4 A History Based Technique For Regression Test Case

Prioritization Of Object Oriented Software (HTRTCPOOS)

191

 5.4.1 The Prioritization Factors Considered in the Presented

Approach

193

 5.4.2 Result and Analysis 196

 5.4.3 Case Study 196

 5.4.4 Comparative Study of the Proposed Approach

((HTRTCPOOS))

 200

 5.5 Conclusion 201

CHAPTER VI: CONCLUSION AND FUTURE SCOPE 203-206

 6.1 Conclusion 203

 6.2 Benefits of the Proposed Work 203

 6.3 Future Scope 205

REFERENCES 207-223

APPENDIX – A 225-230

APPENDIX – B 231-240

APPENDIX – C 241-245

APPENDIX – D 247-248

APPENDIX – E 249-251

APPENDIX – F 253-254

BRIEF BIO DATA OF RESEARCH SCHOLAR 255

LIST OF PUBLICATIONS OUT OF THESIS 257

xv

LIST OF TABLES

Table 3.1 Proposed Factors (MFCCTCPTOOS) 54

Table 3.2 Factors Covered by Test Cases 55

Table 3.3 Line of Code Covered by Test Cases 56

Table 3.4 Calculated Cost of Test Cases 56

Table 3.5 Pairs of Cost and Code Covered by Test Cases 56

Table 3.6 Faults Detected by Test Cases in Non Prioritizing Order 57

Table 3.7 Faults Detected by Test Cases in Prioritize Order 57

Table 3.8 Compared Result of Test Cases for Prioritized and Non

Prioritized Order

60

Table 3.9 Proposed Factors and Assigned Weight (SATCPTOOS) 62

Table 3.10 Independent Path and Test Cases Corresponding to the

Independent Paths

68

Table 3.11 Factors Covered by The Test Cases 69

Table 3.12 Calculated Value of TCPW 70

Table 3.13 Faults Detected in Random Order 71

Table 3.14 Faults Detected in Prioritized Order 72

Table 3.15 Case Study 2 Results (APFD) 74

Table 3.16 Considered Factors and Assigned Weight

(TCPTOOSUMC)

75

Table 3.17 Determined Value of VM, DM and CM 81

Table 3.18 PPV of All Feasible Independent Paths 82

Table 3.19 Paths Covered by Test Cases 83

Table 3.20 Fault Detected by Test Cases in Non Prioritized Order 83

Table 3.21 Faults Detected by Test Cases in Prioritized Order 84

Table 3.22 Faults Detected by Ordered Test Cases Obtained from

Method Coverage Based Approach

85

Table 3.23 Value of Weight Assigned to Coupling Type 88

Table 3.24 Weight Assigned to Dimensions of Coupling under Each

Category

89

Table 3.25 Determined Value of Interaction Coupling in Individual

Classes

94

xvi

Table 3.26 Determined Value of Component and Inheritance

Coupling of All Combination of Classes

94

Table 3.27 Determined Value of Vcomb of Combination of Classes

and Individual Classes

95

Table 3.28 Prioritized Combination of Classes, Individual Class and

Covered Test Cases

96

Table 3.29 Determined Interaction Coupling of Individual Class 97

Table 3.30 Determined Component and Inheritance Coupling

Interaction Coupling of Individual Class

97

Table 3.31 Calculated Value of Ccomb 97

Table 3.32 Faults Detected by the Test Cases in Random Order 98

Table 3.33 Faults Detected by the Test Cases in Prioritized Order 98

Table 4.1 Predicted Weight of the Factors Associated With

Requirement

107

Table 4.2 Predicted Weight of the Factors Associated With Modules 108

Table 4.3 Predicted weights of the Factors Associated with Test

Cases

108

Table 4.4 Proposed Factors and Weight to Prioritize the

Requirements

109

Table 4.5 Proposed Factors to Prioritize the Modules 110

Table 4.6 Proposed Factors to Prioritize the Test Cases 111

Table 4.7 Prioritization of Requirements 112

Table 4.8 Prioritization of Modules of Highest Prioritized

Requirement

112

Table 4.9 Prioritization of Test Cases of the Highest Prioritized

Module

113

Table 4.10 APFD Values of the Non Prioritized, Port and Proposed

Approach

114

Table 4.11 APFD Values of the Non Prioritized, PORT 2.0 and

Proposed Approach

115

Table 4.12 Types of Messages and Interaction in Object Oriented

Programming Language

121

Table 4.13 Intermediate Requirements Dependency Value (IRDV). 124

Table 5.1 Test Cases Designed for Addition of Class 141

xvii

Table 5.2 Test Cases Selected for Addition of Class 142

Table 5.3 Test Cases Designed Before the Modification of a

Function in a Class

151

Table 5.4 Test Cases After the Modification of a Function in a Class 151

Table 5.5 Test Case Selected for Re Execution for Modification of a

Function

151

Table 5.6 Test Cases Designed for Addition of a Function in a Class 159

Table 5.7 Test Cases Selected for Re-execution for Addition of a

Function in a Class

160

Table 5.8 Analysis of Proposed Approach 160

Table 5.9 General Faults Weight Table 165

Table 5.10 Priority Assigned to Each Class of Inheritance Hierarchy 172

Table 5.11 Test Cases of Class Study 173

Table 5.12 Faults Weight (Class Study) 175

Table 5.13 Faults Detected by Non Prioritized Test Cases (Class

Study)

175

Table 5.14 Faults Detected by Prioritized Test Cases 178

Table 5.15 Percentage of Faults Detected by Test Cases 178

Table 5.16 APFD Metric (Class Study) 179

Table 5.17 Test Cases of Class lec_time 182

Table 5.18 Faults Weight (Class lec_time) 182

Table 5.19 Test Case and Fault Table of Class lec_time 183

Table 5.20 APFD Metric (Class lec_time) 183

Table 5.21 Percentage of Faults Detected by Test Cses 184

Table 5.22 Test Cases of Class sports_time 186

Table 5.23 Faults Weight (sports_time) 186

Table 5.24 Test Case and Detected Faults of Class sports_time 186

Table 5.25 APFD Metric (Class sports_time) 188

Table 5.26 Percentage of Detected by Test Cases 188

Table 5.27 Result of Proposed Technique 191

Table 5.28 Analysis of APFD Metric 191

Table 5.29 Prioritization Key of Test Cases 192

Table 5.30 Value Assigned to the Detected Faults 195

xviii

Table 5.31 Testing History of Consider Case Study 196

Table 5.32 Determined Value of Considered Factors 197

Table 5.33 Test Case Order of the Various Approaches and Proposed

Approach

198

Table 5.34 Faults Detected by Test Cases 198

Table 5.35 APFD Value of the Proposed Approach and Others

Approaches

200

xix

LIST OF FIGURES

Figure 3.1 Overview of the Proposed Approach (MFCCTCPTOOS) 53

Figure 3.2 Algorithm of the Proposed Approach (MFCCTCPTOOS) 55

Figure 3.3 APFD Graph of Non Prioritized Order of Test Cases 58

Figure 3.4 APFD Graph of Prioritized Order of Test Cases 58

Figure 3.5 APFD Graph of Non Prioritized Order of Test Cases 59

Figure 3.6 APFD Graph of Prioritized Order of Test Cases 59

Figure 3.7 Overview of Proposed Approach (SATCPTOOS) 61

Figure 3.8 Representation of Various Features 65

Figure 3.9 OOCFG of Considered Case Study 67

Figure 3.10 APFD Graph for Non Prioritized Approach 73

Figure 3.11 APFD Graph for Proposed Approach 73

Figure 3.12 Comparison between the Proposed Approach and Non

Prioritized Approach

74

Figure 3.13 Overview of the Proposed Approach (TCPTOOSUMC) 77

Figure 3.14 Algorithm of Proposed Approach (TCPTOOSUMC) 79

Figure 3.15 Method Call Graph (MCG) of Case Study 80

Figure 3.16 APFD Graph for non Prioritized Approach 86

Figure 3.17 APFD Graph for Method Coverage based Approach 86

Figure 3.18 APFD Graph for Proposed Approach 87

Figure 3.19 APFD Graph For Non Prioritized , Proposed And Method

Coverage Based Approach For Hotel Room Reservation

Software

87

Figure 3.20 Algorithms for the Proposed Approach (CATCPTOOS) 92

Figure 3.21 Consider Hierarchy of Classes 93

Figure 3.22 APFD Graph for Non Prioritized Approach 99

Figure 3.23 APFD Graph for Proposed Approach 99

Figure 3.24 Comparison of APFD Graph for Non Prioritized, Proposed

and Ajay K. Jena Approach

100

Figure 4.1 Process of Determination of the Factors Weight 103

Figure 4.2 APFD Graph of Non Prioritized, PORT 2.0 and Proposed

Approach

114

xx

Figure 4.3 APFD Graph of Non prioritized, PORT 2.0 and Proposed

Approach

115

Figure 4.4 Framework for Cost Reduction 119

Figure 4.5 Partition of the Requirements 120

Figure 4.6 Intermediate Requirement Dependency Graph 124

Figure 5.1 Overview of Proposed Technique 129

Figure 5.2 Algorithm for Selecting The Test Cases To Test The

Affected Classes

131

Figure 5.3 Algorithm for Selecting the Test Cases for Addition of a

Function in Class

132

Figure 5.4 Algorithm for Selecting the Test Cases for Modification of

a Function in Class

133

Figure 5.5 Deletion of a Class 135

Figure 5.6 OPDG for Addition of Class 143

Figure 5.7 OPDG for Modification of a Function in a Class 150

Figure 5.8 OPDG for Addition of a Function in a Class 158

Figure 5.9 Algorithm for First Level Prioritization 163

Figure 5.10 Algorithm for Second Level Prioritization 164

Figure 5.11 Inheritance Hierarchy of Case Study 166

Figure 5.12 Flow Graph of Class Study 174

Figure 5.13 Fault Percentage Detected by Non Prioritized Test Suite 179

Figure 5.14 Fault Percentage Detected by Prioritized Test Suite 179

Figure 5.15 Flow Graph of Class Lec_time 181

Figure 5.16 Fault Percentage Detected by Non Prioritized Test Cases 184

Figure 5.17 Fault Percentage Detected by Prioritized Test Cases 184

Figure 5.18 Flow Graph for Class sports_time 187

Figure 5.19 Fault Percentage Detected Non Prioritized Test Cases 189

Figure 5.20 Fault Percentage Detected by Prioritized Test Cases 189

Figure 5.21 Overview of Proposed Approach (HTRTCPOOS) 195

Figure 5.22 APFD Graph of the Unordered Test Cases 199

Figure 5.23 APFD Graph of the Test Cases Ordered by Nayak et. al.

Approach

199

xxi

Figure 5.24 APFD Graph of the Test Cases Ordered by Proposed

Approach

200

Figure 5.25 Comparison of APFD Graph of Various Approaches 201

xxii

LIST OF ABBRIVATIONS

OOT Object Oriented Technology

OOS Object Oriented Software

APFD Average Percentage of Faults Detection

OPDG Object Program Dependency Graph

OO Object Oriented

F Fault

SF Sum of Factors

TFC Total Factor Coverage

TF Total of Factors

OOCFG Object Oriented Control Flow Graph

TCPW Test Case Prioritization Weight

MCG Method Call Graph

VM Volume of Method

DM Difficulty in Method

CM Complexity of Method

PPV Path Prioritization Value

FM Factors in Method

Cinhr Inheritance Coupling

Cintr Interaction Coupling

Ccomp Component Coupling

Vcomb Coupling Value of combinations of Classes

Cn Content Coupling

Co Common Coupling

Ex External Coupling

Con Control Coupling

St Stamp Coupling

Dt Data Coupling

MC Modification Coupling

RC Refinement Coupling

EC Extension coupling

HC Hidden Coupling

xxiii

SC Scattered Coupling

SPC Specified Coupling

RDV Requirement Dependency Value

MDV Module Dependency Value

RCM Requirement Coverage Value

FCT Factor Coverage Value

RPV Requirement Prioritize Value

MPV Module Prioritize Value

TC Test Case

TCPV Test Case Prioritization Prioritize Value

IRDV Intermediate Requirement Dependency Value

TE Testing Effort

CORFOOS Cost Reduction Framework for Object Oriented

Software

RTCPV Regression Test Case Prioritization Prioritize

Value

CDB Capability of Detecting Bug

CC Coverage of Classes

ET Execution Time

CHS Class Hierarchy Subgraph

RTS Regression Test Selection

OOPS Object Oriented Programming System

1

Chapter I

INTRODUCTION

1.1 OBJECT ORIENTED SOFTWARE TESTING

In past three decades the utilization of the Object Oriented Technology (OOT) to

develop the software has widely increased. OOT provides quality software by using

its promising features. The OOT supports the features like data abstraction,

information hiding, inheritance, polymorphism etc. The problem is represented and

understood in natural way by using the OOT. The process of the development of the

software using the OOT is different from the other programming paradigms.

To ensure the quality of the software, testing of the developed software is required.

Testing in specialized environments requires more attention with the more specialized

testing techniques. The testing techniques are dependent on the environment and they

may change their working behavior according to the environment. It is very

challenging to test the object oriented software as compared to the procedure oriented

software. The testing strategies and technology are different for the object oriented

software. Most of the testing concepts lose their meaning in OOT.

1.2 TEST CASE PRIORITIZATION

To perform the effective testing within time and budgets the test cases are ordered and

executed in such a way that they detect the maximum faults as earlier as possible

which helps to deliver the software within specified time and budgets. Some test case

prioritization techniques are required to reorder the test cases.

2

Test case prioritization [1] technique schedules the execution of test cases in an order

that attempts to increase their effectiveness in meeting some performance goal. Test

case prioritization techniques mainly order test cases according to some criteria that

aim to increase the rate of fault detection or maximize the code coverage.

Prioritization of the test cases can be done at three levels

 Prioritization for Regression Test Suite: In this level the test suite of

regression testing is prioritized.

 Prioritization for Unit and Integration Testing Test Suite: In this level the

test suite of unit and integration testing is prioritized.

 Prioritization for System Test Suite: In this level the test suite of system

testing is prioritized. Various factors are used to prioritize the test cases of the

system testing.

1.3 MOTIVATION AND RESEARCH OBJECTIVES

Object oriented software is different in many ways as compared to the procedure

oriented software. Object oriented software is easy to design but testing of the object

oriented software is difficult. Most of the testing concepts are meaningless in testing

of object oriented software. Object oriented testing techniques and strategies are

different from the procedure oriented software. A lot of work has been published to

prioritize the test cases for the object oriented software. The researcher proposed

various test case prioritization techniques to prioritize test cases for the regression

testing and system testing of the software. They used various factors to prioritize the

test cases, like coverage based customer priority etc. However there should be some

program structure related factors which may be used to prioritize the test cases with

the goals to detect the maximum faults as earlier as possible and reliable software.

Similarly the complexities of the method and various factors that are contributed to

introduce in software have not been addressed in the past literature. In object oriented

software there are various concepts if they are not used in efficient way they may

become reason of severe faults in software which also not considered to prioritized

the test cases. The existence of higher coupling in software makes it very difficult to

3

maintain and test the software. So coupling factor may also be considered for test case

prioritization of object oriented software.

The researchers used various algorithms like ant colony, hill climbing etc. Some

researchers have taken various factors related to the past history of testing to order the

test cases. But they don‟t use the efficiency and capability of a particular factor to

detect the critical and maximum bug as earlier as possible. Inheritance makes the

subclasses dependent on the super class and a change in the super class will directly

affect the subclasses that are inherited from it i.e. All subclasses need to be retest.

Hence it increases dependency among classes which results in low testability. So, in

this case, it is better to check the control flow in the form of classes first and then

prioritize the highly affected class and then its test cases. Every test case has the

capability to detect the faults whether it is a new fault or detected earlier. A lot of

constraints have been imposed on the software industry which may be affecting the

quality of the software. These constraints are the budget, time, resources etc. To

utilize the limited resources (viz. cost, time, test tools, man power) in an efficient

manner, test cases should be reduced and prioritized by identifying the affected paths

and affected functions due to modifications in the object oriented systems.

The objective of this research is to design the efficient test case prioritization

technique for the object oriented software which helps to perform the effective testing

within less time and cost. To achieve this objective, the work on following goals has

been performed.

(1) To design and validate a technique for identifying the major changes in

software and then prioritize the test cases to test the affected part of software.

(2) To design a test case prioritization technique by determining the most

effective factors that contribute in identifying the highly important test cases

such that there will be high rate of fault detection for an object oriented

software system.

4

(3) To design and validate a technique for system test case Prioritization for object

oriented software based on types of requirements, complexities included in

requirement modules complexities, fault proneness etc.

1.4 CHALLENGES OF TEST CASE PRIORITIZATION

1.4.1 Selection of Test Case and their Prioritization during Regression Testing of

Object Oriented software: Selective retesting of the software is performed to

identify that modification in software has not caused unintended effects in software.

Modifications can be done by adding or deleting a class, interface or a function. It is

very challenging task to identify affected part of the software by modification and to

select test cases corresponding to the affected paths. The size of the test suite may

grow as the software gets modified. It is very expensive and time consuming to

execute all the test cases.

Solutions: To solve the problem a regression test selection technique for object

oriented software is proposed. The proposed approach used the Object Program

Dependency Graph (OPDG) and dynamic slice to determine the affected path and

select the test cases. To cope with the issue of identifying of affected part in the

modified software, two test case prioritization techniques for object oriented software

are presented. The first technique works at two levels. At the first level classes are

prioritized on the basis of the calculated testing efforts. At the second level test cases

of the prioritized classes are prioritized using the past execution of the test case.

In the second technique some critical factors are considered. Every factor has been

assigned a positive weight which shows the criticality of the factor. By using this

factor the regression test cases prioritization technique for object oriented software is

presented.

1.4.2 Test case prioritization for Unit and Integration testing of object oriented

software: A lot of time, effort and cost is spent to perform the unit and integration

testing as a large number of test cases are needed to be executed. So there should be

an efficient technique to prioritize the test cases.

5

Solutions: To cope with this issue, five test case prioritization techniques for object

oriented software are proposed. These proposed techniques considered some factors

for prioritization of the test cases. The factors are considered on the basis of their

capability to detect the maximum faults by less efforts or having the higher chances to

introduce faults in the software.

1.4.3 Prioritization of Test Cases for System Testing and Designing a framework

to reduce the testing cost: In system testing the software is need to be tested in the

real conditions which are very challenging. So large numbers of test cases are

generated in object oriented environment.

Solutions: To resolve the above challenge a technique to prioritize the system test

cases for object oriented is presented. The presented approach works at three levels.

At fist level requirements are prioritized using the seven factors. At the second level

the modules are prioritized using four factors. At the third level the test cases of

prioritized module are prioritized using the six factors.

A framework to reduce the testing cost to test the object oriented software is also

presented. The presented framework prioritizes the requirements which are going to

test in three categories. Further the categorized requirements are mapped with the

past testing history of the software tested by the industry. After this testing strategies

are decided which help to deliver the quality product within the lowest testing cost

and time.

1.5 ORGANIZATION OF THESIS

The thesis has been organized in the following chapters:

Chapter 1: Covers the introduction of the thesis.

Chapter 2: The basic concepts of object oriented software testing, regression testing

and test case prioritization are discussed in this chapter. A detailed review of the

available test case prioritization techniques for object oriented software and the issues

associated with these techniques are also discussed.

6

Chapter 3: In this chapter four test case prioritization techniques for unit and

integration testing for object oriented software are presented in this chapter. In first

technique, the test cases are prioritized on the basis of cost and code covered by the

test cases. The second approach prioritizes the test cases on the basis of structural

analysis of the object oriented software. The third technique prioritizes the test cases

on the basis of the method complexity. The fourth technique uses the existing

coupling in the software to prioritize the test cases. The proposed techniques have

been validated by applying it on software. To show the effectiveness of the proposed

techniques the experimented results are compared with existing similar techniques

and non prioritized approach.

Chapter 4: This chapter covers a multilevel system test case prioritization technique

for prioritizing the system test cases of object oriented system. It also describes

framework for reducing the testing cost for object oriented system. The efficiency of

the proposed technique is evaluated by comparing with non prioritized as well as

previous existing approaches.

Chapter 5: This chapter is concerned with prioritization of the test cases while

performing regression testing. It is further divided into three sections. In first section,

a regression test case selection technique for object oriented software based on OPDG

and dynamic slicing is presented. The second section of the chapter discusses a fault

severity based technique to prioritize the regression test cases. The third section

discusses a history based technique for regression test case prioritization of object

oriented software. All the proposed techniques in this chapter have been validated and

the results obtained show the efficacy of these techniques.

Chapter 6: It concludes the outcome of the work proposed in this thesis. It also

discusses the possibilities of future research work based on the proposed approaches.

7

Chapter II

LITERATURE REVIEW

2.1 INTRODUCTION

In last two decades most of the software has been implemented using the object

oriented programming system. The software industry has adopted object oriented

technology (OOT) to develop the software. In almost every field the OOT is a

preferred programming paradigm. These fields may be artificial intelligence, graphics,

exploratory programming physics, telecommunications etc. Object oriented

technology has various features that make it popular. These factors are the data

abstraction, information hiding, extensional programming and reusability of the code.

The process of developing the software using the object oriented technology is

different than the developing of the software using the procedural oriented

programming system. The software developed using the procedural oriented

technology has higher complexity as compared to the software developed using the

object oriented technology. The complexity of the software is main reason to adopt

the object oriented technology. Besides the merits of the object oriented technology

testing of the object oriented software is very challenging. Lots of testing concept of

the procedural oriented language has lost their existence in object oriented

technology. The design of the software is very easy but it is hard to test and maintain

as compared to the procedural oriented software. Object oriented software has [2]

some testing and maintenance problems listed below

 Understanding Problem In object oriented software invocations of many

functions take place due to the information hiding and encapsulation. It is very

difficult to understand the sequence of the execution of the functions and

design the test cases corresponding to the identified sequences.

8

 Dependency Problem In object oriented technology there is tightly coupled

relationship between the inheritances, aggregation, association, class nesting,

function invocations, polymorphism etc. These relationships show how the

one class depends on another class. The complexity of the relationship

increases the difficulty for testing and maintenance of the object oriented

software.

 State Behavior problem: In object oriented technology every object has state

and state dependent behaviour. Object changes its state when any operation is

applied on the object and the combined effect of the applied operations on the

objects should be tested.

2.2 IMPACT OF OBJECT ORIENTED TECHNOLOGY ON TESTING

Software development organizations are use the object oriented technology to [3]

enhance the productivity and efficiency of the software. To assure higher

productivity and efficiency, more testing efforts are required to test the software.

There are many factors [4] which distinguish the OOT from the procedural oriented

technology. These factors are the encapsulation, data hiding, inheritance, reuse and

abstraction.

 Encapsulation: In encapsulation one or more elements are bounded in a

single container. Encapsulations have three levels, low – level,[5] mid- level

and high level. The low level contains the array and records, mid level

contains elements like subprograms and subroutines and high level contains

the items like classes, packages and objects. In object oriented testing the

basic unit of the testing is the object or classes. In OOT the functions are allied

with the object and state of the object defines the behavior of the object.

Berard [5] introduces two types of impacts of encapsulation on testing of

object oriented software.

1. The change in the definition of the Unit

2. Impacts of change in the definition of unit on the integration testing

9

 Information Hiding: Information hiding is the hiding the object details that

do not contribute to its essential [6] characteristics. It hides the structure of the

objects as well as the method implementations. The concepts of the

information hiding make the testing very challenging. If the tester wants to test

the method the access of the internal state of the object or data is required,

which is hidden from the tester.

 Abstraction: Abstraction focuses [6] on the outside view of the objects. It

shows only the essential behavior of the objects and hides its implementations.

To test the object, information abstracted by the object is required but it gives

only black box view of the object.

 Inheritance: In Inheritance one class shares its structure or behavior with the

one or more classes. The implementation of inheritance means derived class

acquires all the properties of the base class. In inheritance functions can be

redefined or override in the derived class. For executing the different member

functions, concept that can execute the different functions based on pointer

type of the object must be considered by the testing techniques. The inherited

features of the base class also require the retesting when these are inherited in

the derived class. The testing of the derived class is affected by the retesting of

all the features of the base class. The issues in testing of inheritance are given

below

 Superclass modification

 Inherited methods

 Reusing of test suite of superclass

 Addition of subclass method

 Change to an abstract superclass interface

 Interaction among methods

10

2. 3 REQUIREMENT TESTING

The cost of the removal of the bug is directly dependent on the creation and the

detection of the bug. The cost of fixing the bug at later stage is more as compared to

the bug detection at earlier stages. Testing of the requirements helps to reduce the

testing cost by detecting the bug at earlier stage. Requirement testing also helps to

deliver the software in specified time. The requirements are delivered to designers by

analysis of the requirement of the customers.. The result of analysis of the

requirements is the description of functions that are performed by the system. The

commonly tools used for the requirements analysis are Prototyping, Graphical User

Interface, Requirements specification model, Domain object model and Use case.

 The testing of requirements is performed to validate the quality of the output of

requirement analysis phase and detect the maximum errors at earlier phase. The

Requirement testing has three basic issues namely Correctness, Completeness and

consistency.

2.4 DESIGN TESTING

The testing of design is performed to assure whether the design will meet the required

specification or not. It is very costly to fix the bugs at later stage. So it is imperative to

test the design by utilizing the best resources of the organization. The three category

of the design has been given by the D. Champeaux. These are [7] the functional,

physical and performance design. All three categories are focused on the goal. The

software design phase uses the functional requirements, resource requirements and

performance requirements from the requirements analysis phase. The class diagrams

and object interaction diagrams are used to describe the architecture of the object

oriented system. There are five objectives to perform the testing of design of the

object oriented system. These are the consistency, completeness, feasibility,

correctness and traceability.

2.5 BASE CLASSES UNIT TESTING

Class is a basic unit for the development and testing of the object oriented software.

Unit testing contains the verification of the smallest part of the software which is

11

going to develop. It gives the assurance that individual parts of the complex system

work according to their specifications. Some motivations and objectives behind the

testing of a class are given below [8] , Completeness, Early Testing, Easy Debugging ,

Better Coverage, Better Regression Testing, Reduced future testing effort, Better

quality system . In Unit testing a class should be tested at the following three [9]

levels.

2.5.1 Functional Testing of Methods: In this, every method of the class should be

tested according to their functions and does not consider its implementation. Every

method should be tested individually.

2.5.2 Structural Testing of Methods: In structural testing of the methods it should

be tested in such a way that all the feasible paths must be covered by the design test

cases.

2.5.3 Interaction Testing of the Method: After testing the method in isolation,

interaction of method with the other methods should be tested. The working of the

methods also depends on the other methods which are associated with it.

2.6 DERIVED CLASSES UNIT TESTING

Inheritance of classes is the basic feature of the object oriented programming system.

In inheritance the various classes are related in the hierarchical relationship and share

the common features between the different classes. Every class is created to

implement some functionality and classes are logically related to the other classes.

Inheritance is used to bind the two classes in logical way. In inheritance the two

classes are logically related to each other and a class is derived from the other class

called base. The derived class acquires all the properties (data member, member‟s

functions) of the base class.

There are two ways to test the derived class, which are given below

(a) Test a derived class as a flattened class. In this all the inherited attribute of the

base class should be tested in the derived class.

12

(b) If the base class is already tested then the inherited attributes of the base class

need not to be retested in the derived class

2.7 TESTING SPECIAL FEATURES OF OOS

In this Section some special [4] features for the object oriented software are discussed.

2.7.1 Static Data members: A static member is shared by all the objects of the class.

Static members are used not only the part of the object of the class but it can also be

used without creating the object of the class. A special testing technique is required to

test the static data members. In a class it is possible to have the static data members

and static member functions together. Static member‟s functions can directly use

only the static data members of class. For testing the static data member static slice is

used.

A static slice is slice of the class whose data members are declared as static. Two

types of testing is required by static slice

(1) Testing as a part of class

(2) Testing as Stand- Alone data members

2.7.2 Function Pointers: Functions pointers are used to change the behavior of

functions at run time. A function pointer points to the address of the functions. It is

just like the ordinary pointer. It is also initializable, modifiable, and reportable like

the other data members. A slice is created for the function pointer and all the

members‟ functions that manipulate it. The functions pointer is tested for all the

possible combinations.

2.7. 3 Structure as Data members: Structure is used to combine the different type

of the data items. It can be declared as a data member of the class like the other data

members of class. The state of the object of class depends on the state of the structure

type data member of the class. A modification in the state of the structure puts impact

13

on the state of the object of class. For such type of class multilevel testing technique is

required.

In the first level of the testing the reference of a structure is tested. Only one slice of

this structure type is used and considers the modifications in its references. In the

second level of testing the slice is further subdivided in subslices. Every subslice

represents the unique elements of the structures.

2.7.4 Nested Classes: In nested classes a class is declared inside the other class.

Nested class is used to minimize the number of the global names. Nested class can be

used for the following objectives

 To resolve the naming issues

 For containment purpose

In case of naming issues the nested class can be tested as a separate class without any

special type of testing. In the case of containment, purpose multilevel testing

technique is required. The suggested three level testing techniques is given below

 Testing a Pointer/Reference as a data members

 Testing a nested class as a standalone class

 Testing a Nested Class in the scope of the enclosing class

2.7.5 Members Access Control: A class can control accessibility of its members to

functions other than its own member functions [10]. Member functions of class

acquire access either by default or by the use of the public, private and protected.

Private: private members are only used by the member functions and friend function

in the same class.

Protected: Protected members are used by the member functions and friend function

of the same class and any derived class form the class in which they are declared.

14

Public: Public members can be used by any function.

Three levels of testing technique is used to test the three type of members access

controls

 Testing a class from unrelated client‟s perspective

 Testing a class from derived class‟s perspective

 Testing a class from its own perspective

2.7.6 Composite Classes: A Composite class can be created by two or more objects.

The objects that are used to create the composite class are known as the composing

objects. The two level testing techniques are required to test the composite classes.

 Testing a Pointer /Reference

 Testing a Composite class with composing classes

2.7.7 Abstract Class: Abstract class is used to give the common interface for the

different types of the derived class. There is no object of the abstract class but pointer

to object of type of abstract class can be declared. Since the object of the class is not

created so testing of the abstract class is not required but to minimize the testing of

derived class of the abstract class minimal testing should be performed.

2.8 INTEGRATION TESTING

Integration testing is testing approach to detect the errors when two or more

individual developed components are combined together with objective to fulfill the

required functionalities. Generally the errors related to the integration testing are the

interface errors, timing errors and throughput errors. In the object oriented software

every component has a state and integration may affect its behaviors. For performing

the integration testing, three types of the testing techniques are there, Execution based

integration testing, Value based integration testing, and Function based integration

testing.

15

There are the following possible combinations of the integration.

 Integration of members into a single class

 Integration of two or more classes using inheritance

 Integration of two or more classes using containment

 Integration of two or more classes to build a component

 Integration of many components to develop an application

The main objective of the integration testing is to assure that all the individual

components are combined and obtained the desired goal without errors or any failure.

Bill hetzel [10] determined the five considerations for planning of integration testing.

These five considerations can be summarized in the following questions

 How many objects should be assembled before integration testing?

 What should be the order of the integration testing?

 Should be there more than one skeleton for integration?

2.9 INTEGRATED SYSTEM TESTING

In the system testing whole system is tested to assure that whether the developed

system meets the desired functionality or not. The system testing includes the

integrated system testing, alpha testing, beta testing, and the user acceptance testing.

During the system testing, all the functional test, performance test , stress test and the

resource requirement test should be performed. Many systems are unable to perform

correct functionality during the performance and stress testing of the software.

Sometimes the software is not able to perform in real working environment.

Performance testing of the system should be tested according to its performance

requirements. The heavy volume of data should be used to test scalability of the

system. The occurrence of the deadlock and termination should be checked by

operating the system for hours, days and months. The system should be executed on

the different types of hardware and software platforms to verify its portability.

Software specification documents must be checked for correctness, consistency and

completeness of the system.

16

In system testing the system should be tested for all the possible combinations of the

data for all conditions. But it is not feasible due to time and resource constraints. All

the requirements should be exercised and select the significant data that covers the

broad range of the usage. The following types of testing should be performed for

system testing

 Sanity testing

 Functional Testing

 Human factors testing

 Performance testing

 Capacity /load testing

 Documentation testing

2.10 LEVELS OF TESTING FOR OBJECT ORIENTED TESTING

There are four levels [11] for the testing of the object oriented software. The number

of testing levels depends on the testing approach. Generally the object oriented testing

is done at four levels. These levels are

 Method Level Testing

 Class Level Testing

 Inter class Testing (Cluster Level Testing)

 System Level Testing

Method Level Testing: In method level, testing of an individual method is

performed. The methods of the class are tested by applying the techniques used for

the conventional programming language.

Class Level Testing: The data members and the member functions are combined in a

class. The interaction among the different functions of an individual class is tested.

The testing of an independent function is challenging.

17

Inter Class Testing: The classes in object oriented software are interacting through

objects and parameter passing. Inter class test is performed to test the interaction

among the different classes.

System Level Testing: The cluster of the classes makes the system. In system level

testing whole the system is tested at various levels. System level testing is concerned

with the input supplied by the user and output visible to the outside user.

2.11 OBJECT ORIENTED TESTING TECHNIQUES

In this section three [12] popular techniques for object oriented software are

discussed. These techniques are the path based testing, state based testing and class

testing.

2.11.1 Path Based Testing: In path based testing the source code is converted in the

activity diagram. The activity diagram shows all the sequence of the activities

performed by the source code. The Unified modeling language (UML) is used to

create the activity diagram. The activity diagram shows the basic and all possible

alternate flow of the software. Every activity is represented by the rectangle with

round corner and transition between the activities is represented by the arrow.

The activity diagram provides the basis of the path testing where all independent

paths are determined and are executed at least once.

2.11.2 State Based Testing: In state based testing for the object oriented software a

state machine is used. In the state machine the output of state machine does not

depend only on the present state but also on the past state. The model of the behavior

of the objects is created by using the state machine. Every state corresponds to the

certain value of the attributes and transitions of the methods. It is expected that the

states are visited by the objects during its life time in response of events. The state

machine is represented by the state chart diagram which is created by using the UML.

The state machine shows the flow of one state to another state. The states are denoted

by the rectangle with round corner and transition between the states is shown by the

arrows. Two special states named alpha and omega are used to represent the

constructor and destructor of the class.

18

2.11.3 Class Level Testing: Class is the basic testing unit of the object oriented

software. The testing of the class is performed to verify the implementation according

to its specification. Class testing is like the unit testing of the conventional testing for

the object oriented software. The class cannot be tested in isolation. It requires

additional code for testing. The test cases are designed to test the test cases, a test

driver is required to execute each test cases. One or more instances of the class is

created by the test driver to execute the test cases.

2.12 BUG CLASSIFICATION BASED ON CRITICALITY

Bugs are classified on the basis [2] of the impact on the software which is under

testing. The bugs are classified in the four categories on the basis of their criticality.

Critical Bugs: These types of bugs stop the functioning of the software. The user is

not able to operate the software.

Major Bugs: These types of the bugs do not stop the functioning of the software but

does not give the results as per its desired results.

Medium Bugs: These types of the bugs cause the output not according to its standard

or conventions.

Minor bugs: These types of bugs do not put the impact on the functionality of the

software.

2.13 OBJECT ORIENTED DESIGN PRINCIPLE

 In this section [12] principles of object oriented design are presented

 Single Responsibility Principle: A class should be designed only for a

single responsibility because each responsibility is a cause of changes in a

class. The classes become large and complex if many responsibilities are

handled by a single class. For avoiding this situation, it is mandatory to

ensure that the code is simple.

19

 Open Closed Principle: Software entities like classes and modules

should be designed in such a way that they are open for extension and

closed for modification. All new functionality should be added in the code

by adding a subclass to the existing class without making any change in

existing classes.

 Liskov Substitution Principle: The instance of super class is replaced by

the instance of the derived class. If this is not followed, the class

hierarchies become messy.

 Interface Segregation Principle: The class should depend on the

smallest possible interface.

 Dependency Inversion Principle: Modules that implement the high level

policy should be dependent on a well-defined interface rather than on

modules that implement low level polices.

 Principle of Package Cohesion: If the classes are changed or reused at

the same time, only then they should be grouped together, otherwise they

should not be grouped together.

2.14 COUPLING IN OBJECT ORIENTED SOFTWARE

Stevens et.al defines [13] coupling as the measure of the strength of association

established by one module to another module. Module having the strong coupling

with other module is difficult to understand and modify to correct its working. Strong

coupling existed between the modules increases the complexity. The complexity of a

software can be decreased by designing the system is such way that lowest coupling

exist between the modules. For object oriented system [14] the following types of

couplings are deduced

(a) Interaction Coupling: In interaction coupling the methods are called by each

other and data is shared by the method. If any class is having the highest

20

coupling of methods within the class, that means class is very complex. The

interaction coupling is further subdivided in coupling dimensions as given

below:

 Content Coupling: In content coupling, one method can access the

directly or indirectly the implementations of the other method.

 Common Coupling: In common coupling, methods are coupled

through unstructured and global shared data.

 External Coupling: In External Coupling two methods of the same

class use the same variable which is acting as a global variable in

module.

 Control Coupling : In control coupling, one method controls the

internal implementations or logic of the other methods

 Stamp Coupling: In stamp coupling, one method passes the whole

data structures as parameter to the other method.

 Data Coupling: In data coupling, two methods are communicated

through the parameter only.

(b) Component Coupling: In component coupling, one class is used as a domain

by any instance variable of the class. The component coupling is further

subdivided in coupling dimensions as given below:

 Hidden Coupling: The coupling between the two classes C1 and C2

is said to be hidden if the object of C2 used the implementation of a

method of C1 whereas C2 is not shown in the specification and in the

implementation of C1.

 Scattered Coupling: Two classes C1 and C2 are scattered coupled if

any local variable or instance variable of C1 uses C2 as domain.

21

 Specified Coupling: In specified coupling, one class is included in the

specification of the other class.

(c) Inheritance Coupling: In inheritance coupling, one class is directly or

indirectly subclass of another class. The inheritance coupling is further

subdivided in coupling dimensions as given below:

 Modification Coupling: In Modification coupling, the inherited information

of the super class is changed by the subclass.

 Refinement Coupling: In Refinement coupling, the subclass adds some new

information to the inherited information and changes only due to predefined

rules.

 Extension Coupling: In Extension coupling, subclass adds some methods or

variable without changing the inherited information from the super class.

2.15 PROGRAM SLICING

Program slice was presented by the Weiser for debugging of a program [15]. Program

slicing is execution of the set of statements of a program. A slicing criterion is used to

create slice of a program. Slicing criterion is a point in program where the computed

value is impacted by the set of statements. Slicing criterion is a pair (S,V) the

statement S in the program and a variable V in the statements S. The set of

statements of a program which have a direct and indirect impact on the computed

value at slicing criterion is called a program slice with respect to slicing criterion.

There are following types of slicing techniques:

 Static Slicing: Static slicing is a set of statements of a program that may put

impact on the value of variable of a particular statement for all possible inputs.

The backtracking dependencies between the statements are used to compute

the static slicing.

22

 Dynamic Slicing: Dynamic slicing is the set of statements that may put

impact on value of variable for specific set of inputs rather than for all inputs.

For dynamic slicing specific information of a program execution is used.

 Backward Slicing: Backward slicing contains the set of statements of

program that may impact the slicing criterion directly or indirectly.

 Forward Slicing: Forward slicing consists of the statements of a program

which may be impacted by a variable V at the particular point which is used

and defined.

2.16 TEST CASE PRIORITIZATION

The size of test suite increases as the software evolves. Due to time, resource and

budget constraints, it is imperative to prioritize the execution of test cases so as to

increase the possibility of early detection of faults. Test case prioritization technique

has become very effective technique to detect the faults as earlier as possible.

Prioritization of test cases can be performed at various stages like potential of fault

detection, statement coverage and branch coverage. Due to large functionality of the

software there is large test suite to test the software. It is not necessary that every test

case incurs a fault. For executing all the test cases testing team requires more

resources and time thereby increasing the cost of the testing. Hence due to testing the

project may go out of budget or may get delayed. The order of test cases also affects

the process of testing and it also helps in reducing the cost of testing of project. As the

cost to fix the bug in early stages incurs less cost as compared to fix the bug at later

stages. It may be possible that earlier test cases report the entire bugs that are also

reported by the test cases which are executed later.

2.17 REGRESSION TESTING

Regression testing is the process to ensure that modified software is working

according to the required specification and the modified part of the software has not

put any affect on the unchanged parts of software [16]. Studies show that regression

23

testing accounts for 80% of the testing costs [17]. Shifts in software development

practices towards component based software development and agile development

impose constraints on regression testing [18], giving rise to approaches that minimize

the cost of regression testing.

In Regression testing a set of test cases is selected from existing test suites to verify

that changes made in software have no unintended side-effects [19]. It is very

challenging task because many software has large test suite and changes in software

are incorporated rapidly. To make the regression testing more effective and efficient

various regression testing techniques have been developed, but many problem remain,

such as Unpredictable performance, Incompatible process assumptions and

inappropriate evaluation models.

2.18 AVERAGE PERCENTAGE OF FAULTS DETECTED (APFD)

Elabus. et al. [20] presented an APFD metric to measure the weighted average of

the percentage of detected faults by execution of the test suite. The value of the

APFD is in range of 0-100, where higher APFD value shows the higher detection rate

of the faults. APFD is calculated by the formula given below

APFD = 1-((TF1 + TF2 + TF3 +-------------------TFm)/nm) + 1/2n

Where TFi is the position of test case in the test suite T that detects the fault i

m is total number of faults detected by test suite

n is the number of total test cases in the test suite T

2.19 TESTING OF OBJECT ORIENTED SOFTWARE USING COUPLING

In this section a review of various research papers related to testing of object oriented

software using coupling is presented.

Varun Gupta et al. [21] proposed a coupling metric for measurement of package level

coupling. The proposed metric considers the different type of connections between

different packages. These connections are class- class, sub package – sub package,

sub package – class and class – sub package. They also considered the hierarchical

structure of package and direction of connection between packages.

24

Vipin Sexena et al. [22] discussed the impact of coupling and cohesion in object

oriented software. They used metric DCH (degree of cohesion) by exploring two

another metrics MRC (message received coupling) and DCP (degree of coupling).

This coupling mechanism helps to measure the functional strength of class of an

object oriented system.

A new technique [23] for analyzing and testing the polymorphic relationship in the

object oriented software presented by Roger T Alexander and Jeff Offutt. They

summarized new testing criteria to address problems that arise from inheritance and

polymorphism. The couplings have been updated and applied to the object oriented

software to handle the aggregation inheritance and polymorphism. The foundation of

proposed technique is coupling sequence.

Eric Arisholm et al. [24] presented the measurement of coupling by dynamic analysis

of systems. They presented formal operational definition for measures of coupling.

They also described a tool for collecting such measures from Java programs

effectively.

Varun Gupta et al. [25] introduced dynamic cohesion metrics. The metrics provide the

scope for measurement of cohesion up to class level. The experimental validation

found that dynamic cohesion metrics are more accurate and useful.

The measurement of coupling [26] which is based on the object oriented relationship

between the classes of the object oriented software is presented by Jeff Offut et al..

They concentrated on the type of coupling which are unavailable after the software

has been developed. The coupling is divided in four types. They also presented a

static tool which is used to determine the coupling between the classes of java

packages.

V. S. Bidve et al. [27] presented the coupling metric for object oriented design. They

used the specially adapted software metrics to investigate the run time behavior of the

objects in Java programs. The considered metric quantifies the coupling at levels of

class to class and object to class. For every measurement they indicate the use of

25

coupling type, factors used to identify the coupling strength, indirect coupling

accounting when coupling are imported and exported.

Roger T Alexander et al. [28] presented an approach for analyzing and testing the

polymorphic relationship of object oriented software. They summarized the data flow

testing technique and new testing criteria that are used to isolate the problem that

occurs due to use of inheritance and polymorphism.

James M. Bieman et.al. [29] presented the evaluations of the effectiveness of the

criteria for detecting the faults that are outcome of the polymorphic relationship

existed in object oriented software. The performed experimented evaluated the three

coupling based test criteria for integration testing. These criteria are all coupling

sequences, all– polly classes and all poly-coupling - defs-uses. The experiment result

shows that the technique is effective testing strategy for object oriented software that

uses the inheritance and polymorphism.

A technique [30] to reduce the coupling existed in the object oriented software is

presented. The presented algorithm has four phases. These phases are authentication,

selection of two object oriented files, count the number of classes/object/inheritance

and deduction of better approach in current situation.

Zhenvi Jin et al. [31] proposed a coupling based integration testing technique. They

defined four coupling based criteria, call – coupling, all- coupling - defs, all-

coupling-uses and all – coupling- paths. The proposed technique has been compared

with the category-partition method and inters procedural data flow testing method.

The outcome of the comparison shows that the proposed technique detects more faults

with the fewer test cases as comparisons with the other methods.

To generate the test cases [32] for object oriented integration testing coupling relation

of unit is used. The technique considered the DU pairs for selecting the method

sequence which are further used to generate the test cases.

An algorithm [33] to solve the class integration test order (CITO) problem is

presented. The findings include superior edge weight. The weights are derived from

quantity coupling measures. The weights are used on nodes resultant allowing more

26

information to be used. For validation of the proposed technique it was compared with

the other technique.

Michela Pedroni et al. [34] analyzed the dependency structure of the object oriented

concept. By an analysis of the dependency structure, they found that basic object

oriented concepts are tightly interrelated.

2.20 TESTING OF OBJECT ORIENTED SOFTWARE USING

INHERITANCE

In this section a review of various research papers related to testing of object oriented

software using inheritance is presented

Sujata Khatri et al. [35] presented the analysis of some factor which affects the testing

of object oriented system. These factors are Data abstraction, inheritance,

polymorphism, coupling, cohesion among methods and abstract classes. These factors

introduced new challenges in testing for object oriented system.

Muhammad Rabee Saheen et al. [36] presented a how cost of unit testing is

predicted using depth of inheritance. They relate the depth of inheritance tree (DIT)

with respect to number of methods to test in each class. In this paper they also

distinguished two types of testing strategies and two types of inheritance tree.

The UML design based metric has been presented by the [37] Gagandeep Makkar et

al. The proposed metric considered the number of inherited attribute and depth level

of class. They also considered the penalty factor. If the reusability decreases then

the penalty factor increases.

Nasib S. Gill et al. [38] characterized metric of reuse and reusability in object oriented

software development. They presented five new metrics. The proposed new metrics

are breadth of inheritance tree (BIT), Method reuse per inheritance relation (MRPIR),

Method reuse per inheritance relation (ARPIR), generality of classes (GC), and reuse

probability (RP).

27

An empirical investigation [39] into the modifiability and understandability of object-

oriented (OO) software is presented by R. Harrison et al. They conducted a controlled

experiment to establish the affects of various levels of inheritance on modifiability

and understandability. The results indicated that the systems without inheritance were

easier to modify and understand than the systems containing three or five levels of

inheritance.

John Daly et al. [40] performed experiment and collected data to test the effect of

inheritance depth on maintainability of object oriented software. The collected data

showed that maintaining task for the object oriented software with the three levels of

inheritance depth is quicker than maintaining the equivalent object oriented software

with no inheritance.

Arti Chhikara et al. [41] presented an assessment of effect of the inheritance on the

object oriented Systems. Their assessment showed that inheritance is a key factor of

object oriented Systems.

Mary Jean harrold et al. [42] presented an incremental class testing technique that

uses the hierarchical nature of inheritance relations among classes. Base classes are

tested first by designing a test suite that tests each member function individually and

also tests the interactions among member functions. In order to design test suite for

subclasses, a subclass have to inherit testing history from its parent class. A testing

history guides the execution of test cases since it indicates which test cases must run

to test the subclass. Only the new attributes or affected, inherited attributes are tested

and the parent‟s class test suites are reused.

Gregory Seront et al. [43] presented the relationship between the degree of object

orientation of software entity and cyclomatic complexity. They observed that there is

no significance correlation between the depth of inheritance of class and its weighted

method complexity.

The object oriented program dependence graph (OPDG) for representation [44] of

object oriented programs. The representation is composed of three layers: these layers

are Class Hierarchy Subgraph (CHS) , Control Dependency Subgraph (CDS) and

28

Data Dependence Subgraph (DDS) The presented representation divided in to three

layers First layer presents the structure of class inheritance, second layer presents the

control dependence and data dependency subgraph with objects and third layer shows

the dynamic and runtime aspects of object oriented programs. They also introduced

new definitions of definition (def) and use of variable.

2.21 TESTING OF OBJECT ORIENTED SOFTWARE USING SLICING

In this section a review of various research papers related to testing of object oriented

software using Program slicing has been presented

Loren Larson et al. [45] presented a system dependence graphs on which slicing can

be applied. The system dependence graph constructed for individual classes, groups

of interacting classes and complete object oriented program. The presented system

dependence graph consists of program dependence graph and class dependence graph.

Program dependence graph represents the main program in the system and class

dependence graph represents classes in the system. A two pass algorithm is used for

computation of slice in system dependence graph.

Anand Krishnaswamy et al. [46] addressed the issues to represent the slicing of object

oriented program. For representation of object oriented program the author designed a

representation which is based on program dependency graph. The concepts like

polymorphism, dynamic binding, class inheritance and message exchange between

objects were also represented. second They presented an algorithm that demonstrates

the applicability of the object oriented program dependency graph for slicing object

oriented is proposed.

2.22 MODEL BASED TESTING OF OBJECT ORIENTED SOFTWARE

In this section a review of various research papers related to testing of object oriented

software based on various models is discussed.

David P. Tegarden et al. [47] proposed a model of software complexity for object-

oriented systems. In this model there are four levels of software complexity of object-

29

oriented systems: variable, method, object and system. At each level there are

measures which account for cohesion and coupling aspects of system at that level.

The measures identified are consistent with the characteristics of good OO design.

Santosh Kumar Swain, et al. [48] presented the testing of object oriented software

based on a model in which test case derived represents the software behavior. The

proposed model based approach carried out at the time of software development for

automatic testing of object oriented software.

The object relation diagram model (ORD) is reverse engineering based and

constructed by analyzing the C++ source code of an object-oriented program [49]. An

ORD is a directed graph in which vertices represent the object classes and edges

represent the relationships among object classes. The test order is generated from the

ORD by using an algorithm called test order algorithm for unit testing and integration

testing of object-oriented programs. This algorithm uses topological sorting and

clusters of strongly connected subgraphs of the ORD. An optimal test order is

computed such that the effort required to construct the test stubs to simulate the

untested classes/ member functions is minimum.

Model based approach [50] increases the flexibility and efficiency of the development

as well as quality and reusability of results. Also varieties of test patterns are

presented for the design of testable object-oriented systems. The proposed approach

uses explicit models for test cases instead of trying to derive test cases from a single

model.

Pranshu Gupta et al. [51] applied a class dependency model to object oriented

programs. In this paper they created hierarchy of testing order using the class

dependency model and analyzed where the faults are concentrated in test order

hierarchy. Based on their analysis the author showed that there should be different

approach for defining the test order for various categories of faults.

Mahfuzul Huda et al. [52] proposed an effectiveness quantification model of object

oriented design. The proposed model uses the technique of multiple linear

regressions between the effectiveness factors and metrics. Structural and functional

30

information of object oriented software has been used to validate the assessment of

the effectiveness of the factors. The model has been proposed by establishing the

correlation between effectiveness and object oriented design constructs. The

quantifying ability of model is empirically validated.

Anil Kumar Malviya et al. [53] presented some observation on maintainability

estimation model for object oriented software in requirement, design, coding and

testing phases. The presented work is about increasing the maintainability factors of

the metrics.

Dinesh Kumar Saini et al. [54] analyzed the security issues related with the

architectures of the object oriented system and created a model for security

assessment. The proposed model is based on risk and it is widely accepted form of

security measurement.

An approach [55] for predicting the run time errors was introduced by Bremananth R.

The proposed fault prediction model is designed to separate the faulty classes. The

separated faulty classes are classified according to the fault occurring in specific class.

This approach concerned with faults due to inheritance and violations of java

constraints.

2.23 TESTING OF OBJECT ORIENTED SOFTWARE USING METRIC

In this section a review of various research papers related to testing of object oriented

software using various metrics has been presented.

parvinder Singh Sandhu et al. [56] proposed dynamic metrics for polymorphism in

object oriented system. They addressed some important factors which may impact

their usefulness. These factors are Dynamic, Robust, Discriminating, Unambiguous,

Platform Independent. They also presented the classification of metrics. The classified

category of metrics is Value Metric, Percentile Metric, Bin Metric and Continuous

Metric.

31

Victor R. Basili, et al. [57] analyzed the results of study done at the University of

Maryland for the object– oriented design metrics introduced by Chidamber&

Kemerer, [174]. To evaluate their results they gathered data about defects found in

object –oriented classes. Then by comparing the results of their experiment to this

data they made a conclusion that five out of six Chidamber & Kemerer‟s OO metrics

appears to be useful to predict class fault-proneness during the early phases of life

cycle. They also concluded that these metrics are better predictors than code metrics.

Seyyed Mohsen Jamaliin et al. [58] identified that software development process

engineers are shifting towards the new processes or approaches with most prominent

being object-orientation. So to manage the process there is a need for metrics suite for

object-orientation. They also presented a basic metric suite for object oriented design.

The influence of program elements metric was proposed by Amarnath Singh et al.

The proposed [59] metric is used to find out most critical elements of program In the

proposed approach they used the intermediate graph representation of the program.

By using the forward slicing on graph with the help of which influence of class is

determined that shows the capability of class to cause failure.

Arti Chhikara et al. [60] presented a set of metrics. The presented metrics are used to

order the programs based on their complexity values. They concluded that there

should be compromise among internal attribute of software to maintain the higher

degree of reusability.

Magiel Bruntink et. al[61] analyzed the relation between classes and their JUnit test

cases. They demonstrated a significant correlation between the class level metrics and

test level metrics. They also discussed how various metrics can contribute to

testability. They conducted the experiments using the GQM and MEDEA framework.

The results are evaluated using the Spearman‟s rank order correlation coefficient.

Ravinder Kumar Gupta et al. [62] proposed a testing technique which is based on the

state and collaboration models of system. The object interactions are tested by

considering state transition of objects and the corresponding activities taking place in

32

use case. They constructed a state collaboration diagram (SCOTEM) and generated

the test cases to achieve state activity coverage of SCOTEM.

2.24 TESTING OF OBJECT ORIENTED SOFTWARE USING

INTERMEDIATE REPRESENTATION OF THE SOURCE CODE

In this section a review of various research papers related to testing of object oriented

software using various representation are presented.

Xiaolan Wang et al. [63] proposed a method for construct a dependency graph of

error statement. They applied the symbolic execution and constraint solving to object

oriented software exact testing. The presented method can be used in many systems

and it is capable to detect the errors in different languages.

An algorithm that directs the construction of functional [64] test cases for a class was

introduced by the Juliana Georgieva and Veska Gancheva. In the proposed algorithm

test cases are constructed from state representation of the specification of class. The

algorithm also provides the basis for automating an increasing amount of the testing

process for object oriented system.

Nirmal Kumar Gupta et al. [65] presented a method that uses genetic programming

approach for generating test cases for classes in object oriented software. In this

method a tree representation of statements in test cases is used. The proposed method

strategies for encoding the test cases and using the objective function to evolve them

as suitable test case are presented.

A Call – based Object [66] Oriented System Dependence graph for object oriented

program gives representation of object oriented program based on dependency. The

proposed representation considers the object oriented features like inheritance and

polymorphism. They also included method visibility in a derived class and different

types of method call edges to describe different calling context.

33

Ranjita kumara swain et al. [67] proposed an approach for generating the test data.

They first created the transition graph from the state chart diagram. The test cases are

generated by extracting the required information from the state chart.

2.25 REGRESSION TESTING OF OBJECT ORIENTED SYSTEM

In this section a review of various research papers related to regression testing of

object oriented software is presented.

David C. Kung et al. [68] proposed an algorithm for generating order of tests of

affected classes. They used an object relation graph which described all the relations

existed in the object oriented program such as inheritance, aggregation, association

etc.

Tarun Dhar Diwan et al. [69] proposed a technique to select test cases from regression

test suite by analyzing the dynamic behavior of the application. In the proposed

technique they combined the code based technique and model based technique.

Chhabi Rani Panigrahi et al.[70] proposed a regression test selection technique for

object oriented programs which is based on analysis of source code of program and

UML state machine model of the affected classes . They construct a dependency

model of original program of source code and updated the same constructed model to

reflect the changes done in the source code. The proposed model also captured

control and data dependencies arising from object relation. They also constructed a

forward slice by using selection criteria of the constructed graph model in intent to

find the model elements affected due to program changes.

Gregg Rothermel et al. [71] proposed an algorithm to construct dependency graphs

for classes and programs to determine the affected tests from exiting test suits and

independent of program specification and methods.

Gregg Rothermel et al. [72] proposed a technique for selection of test case for

regression testing for C++ software. In the proposed technique graph representation of

software is constructed. The test cases are selected from the original test cases by

34

using constructed graph. The selected test cases are used to execute code that has been

changed for the new version of software. This technique is purely code based without

any assumption for any approach that is used to specify software initially.

Alessandro Orso et al. [73] presented an RTS algorithms by consisting of two phases

for Java programs which is safe, Precise and yet scales to large system. The two

phases are Partitioning and Selection. The partitioning phase constructed a graph

representation of programs P and P‟ and analyzed the graphs to identify the parts that

may be affected by changes.

Yanping Chen et al. [74] presented a specification based method for selecting test

case for regression testing. The proposed approach selects two types of test cases.

These types are targeted tests and safety tests. Targeted test cases exercise the

important affected attribute and safety test cases are selected to reach the pre- defined

coverage.

Sheng Huang et al. [75] considered the new features which are not considered yet for

selecting the test cases for regression testing of an J2ee application .These features are

Hybrid test case tracing and unified change identification.

Subhrakanta Panda et al. [76] proposed a method to decompose a Java program in to

packages, classes, methods, and statements which are affected due to modification in

the software.

On the basis of hierarchal characters of Java decomposition of program is performed.

The new test cases and add some new test cases by mapping the decompositions with

the existing test cases. The affected packages, classes, statements, are identified by

traversing the intermediate graph. The System dependency [77] graph model is used

to detect changes in the method of a program which occurs due to data dependency,

control dependency and dependency caused by object relations. For verification of

any statement, slicing is performed on a constructed graph.

35

David Binkley [78] proposed a regression testing approach based on the program

slicing. Program slicing is a useful tool for working on the incremental regression

testing problem.

Swapan Kumar Mondal et. al. [79] proposed an approach to minimize the regression

test cases of the object oriented software based on the impacted classes. They used the

optimal page replacement algorithm to minimize the test cases.

Sapna P. G. et al. [80] proposed a black box approach for generating the test cases for

the regression testing. The UML and activity diagrams have been used to model the

requirements and elaborated the functionality. They used the steiner tree algorithm

with the objective to generate the minimal test set which are used to check

functionality.

Gregg Rothermel et.al [81] proposed a regression test selection technique that is based

on analysis of both the source code of the object oriented program as well as the

UML state machine models of the affected classes.

2.26 TEST CASE PRIORITIZATION FOR OBJECT ORIENTED SYSTEM

In this section a review of various research papers related to the prioritizing the test

cases of object oriented software is presented.

Mohammad Rava et al. [82] presented the review study of various types of technique

to prioritize the test cases. They observed that all presented approach has a common

combination of coverage and faults detection. The primary concern of the

prioritization technique is shifted from the code analysis to history based. By

reviewing the work in area of test case prioritization they also observed that the

industry has adopted the artificial technique to prioritize the test cases rather than

coverage based. But as the size of program exceeds a certain amount artificial

technique drastically loose effectiveness.

36

Sun-Woo Kim et al. [83] presented a class mutation that provides a means of

assessing how appropriate test cases are developed for object oriented programs.

Class Mutation is a form of OO – directed selective mutation testing.

Ranjita Kumara Swain et al. [84] proposed an approach to minimize test cases for the

object oriented software by using state chart. An optimization approach [85] to test

data generation for the state based software testing is presented. In the proposed

approach first state transition graph is derived from the state chart diagram and

extracted all the required information from state chart diagram. After this the test

cases are generated. The advantage of the proposed test generation technique is that it

optimizes test coverage by minimizing time and cost.

Chhabi Rani Panigrahi et al. [86] prioritized the test cases by analyzing a dependency

model of object oriented program. They firstly create the intermediate dependency

model of program. The model is updated to reflect the change when the program is

modified. The union of forward slice corresponding to each changed model is

constructed for determining the affected nodes. The test cases are selected on the

basis of covering the one or more affected nodes and then prioritizing on the bases of

weight of the test cases.

The study of multi- objective test case prioritization technique [87] for highly

configurable system address two limitation of test case prioritization technique for

highly configurable system. First one is that the current prioritization technique is

driven by single objective and second is that they used synthetic data to evaluate

instead of industry strength case studies.

Jian Ding et al. [88] presented the comparison of two test case prioritization

techniques, Adaptive random testing (ART) and dynamic random testing (DRT).

They found that both techniques are extension of the random testing. ART is good for

detection of failure where as DRT is good at understanding the faults. Both the

technique used the different heuristics.

Rubing Haung et al. [89] presented an aggregate strength prioritization strategy for

interaction test suite. The proposed technique combined the interaction coverage at

37

different strengths whereas fixed strengths prioritization technique used the high

coverage at fixed strength.

Dan Hao et al. [90] presented a unified test case prioritization approach. The

presented approach includes two models. They showed that there is a spectrum of test

case prioritization techniques. The spectrum is generated by the model that resides

between the techniques using purely total or purely additional strategies. They

proposed extensions to enable the use of probabilities that test cases can detect errors

for methods and use the dynamic coverage information in place of static coverage

information.

Vincenzo Martena et al. [91] proposed a technique for the inter class testing by using

of data flow analysis for driven a suitable set of test specification

2.27 CODE BASED TEST CASE PRIORITIZATION TECHNIQUES

In this section various code based test case prioritization techniques is presented.

Mohammad Shahid et al. [92] presented an algorithm for test case prioritization based

on code coverage. They showed that test cases that cover more methods have the

higher probability to detect faults earlier.

R.Beena et al. [93] proposed coverage based test case selection and prioritization.

They clustered the test cases into three groups outdated, required and surplus. Then by

using these clusters test case selection algorithm (TCS) is proposed. Then the output

obtained from TCS is given as an input to test case prioritization (TCP).

Alessandro Marchetto et al. [94] presented a multi objective technique that ordered

the test cases to detect the maximum faults critical to business and technical. The

proposed approach takes in to account the coverage of source code, application

requirement and cost to execute the test cases.

A coverage based test case prioritization technique [95] used the statement, function,

path, and branch and fault coverage as a criterion to prioritize the test cases. The

38

weight is evaluated for each test case using coverage information of considered

criteria. They determined and used the average weight to prioritize the test cases. The

coarse grained technique [96] is used to prioritize the test suits which are based on

functional coverage. The prioritization technique is focused on how much extent the

test suites are dependent on each other.

Preeti.et.al [97] proposed a test case prioritization technique for object oriented

software based on the source code analysis. They consider some factors and assigned

them positive weights that are used to prioritize the test cases.

Ajay Kumar Jena et al.[98] proposed an approach for generation and prioritization of

the test cases for the object oriented software. They used the UML sequence and

interaction overview diagrams which are further converted in to the sequence

interaction graph. They also consider the impact of method, activity, criticality guard

of conditions and proposed a prioritization metric.

The analysis of structure of the program [99] is used to prioritize the test cases. The

considered approach consists of three processes. These processes are evaluating TIM

for modules, analyzing test case coverage and identifying test case priority. The

proposed approach is focused on fault proneness of the module and impact of faults

by analyzing the structure of program

Chabbi Rani Panigrahi et.al. [100] presented a model based test case prioritization for

object oriented programs. The presented model based TCP represents the objects

relations. They consider the affected elements of program as well as the elements

which are indirectly tested by test case for prioritizing the test cases.

2.28 FACTORS BASED TEST CASE PRIORITIZATION TECHNIQUE

In this section various test cases prioritization using the factors has been presented

Sanjeev Patwa et al. [101] presented the factors of coding phase that effects the

testing of object oriented software. These factors are programmer and tester skills,

programmer and tester organization, development team size, program workload

39

(Stress), domain knowledge and human nature (Mistake or work omission). Analysis

of factors and place of these factors according to their impact in the software are

identified by using the relative weight method and ANOVA test.

A testing effort prioritization technique [102] is presented to rank components at the

code level. The technique prioritized the components on the basis of five factors of

the components. The considered factors are influence, average execution time,

structural complexity, severity, and value. The proposed method helps tester to find

the bugs in early phases.

R Karisnamoorthi et al. [103] presented a model that prioritized the system test cases.

The test cases are prioritized on the basis of the six factors. These factors are the

customer priority, change in requirements, implementation complexity, completeness,

traceability and fault impact.

R. Kavita et .al. [104] presented an algorithm for prioritizing the test cases. They used

the rate of fault detection and fault impact to prioritize the test cases. The presented

algorithm determines the faults at the earlier stage of the testing process.

An algorithm is presented [105] to prioritize the system level test cases on the basis of

the factors, customer priority, changes in requirement, implementation complexity,

requirement traceability, and execution time and fault impact of requirement. The

presented approach works at levels. At first level the requirement are prioritized and

at the second level prioritization of test cases are performed.

Anup Abhinna Acharya et al. [106] presented a novel technique to prioritize the test

cases. They determined business criticality value (BCV) of the functional and non

functional requirements presented in the software. By using the fault model and BCV

of functions the prioritization of test cases performed. They compared the proposed

approach using APFD method and found that it detects the maximum faults as

compared with the random test case prioritization.

Thillaikarasi Muthusamy et. al. [107] presented an algorithm to reorder the test cases

to detect the maximum faults. They discussed prioritization algorithm based on four

40

groups of weight factors. These factors are customer allotted priority; developer

observed code related complexity, change in requirements, fault impact, completeness

and traceability.

Soumen Nayak et al. [108] proposed a test case prioritization technique to improve

the fault detection rate. They considered the four factors for prioritizing the test cases

which are test case effectiveness, rate of fault detection, number of faults detected and

test case ability of risk detection.

A history value based approach to prioritize [109] the test cases used the past history

information to determine the present cost and fault severity for cost –cognizant test

case prioritization. The outcomes of the experimented results prove it usefulness and

effectiveness.

The Requirement [110] based system test case prioritization technique with equal

weight for factors considered the factors Requirement change, fault impact,

completeness and reusable requirement to prioritize the test cases. Each factor has

assigned the weight within the range of scale 1 to 10. To calculate the weight of the

factors previous testing information is used.

Monika Tayagi et al. [111] proposed a regression test case prioritization technique

using three factors. The considered factors are rate of fault detection, percentage of

fault detected and risk detection ability.

The system level test case prioritization technique [112] used Time, Defect,

Requirement and complexity factors to prioritize the test cases. The proposed

algorithm is validated by using the defect severity, Acceptable test case size and total

prioritization time metrics.

Sahar Tahvili et al. [113] proposed a novel technique to prioritize the test cases. They

combined the TOPSIS Decision making with principal of fuzzy. The discussed

method is based on many criteria such as probability fault detection, execution time

and complexity. For evolution of efficiency of test cases they used the fault failure

41

rate as an indicator to compare the capability of fault detection with the other set of

test cases.

Everton L. G. Alves et al. [114] presented the Refactoring based approach (RBA) to

prioritize the test cases. The presented approach first determined the modification

introduced in two version of software and collected the methods that might be

impacted by change. They analyzed the impact and reorder the test cases for

regression testing.

Md. Junaid Arafeen et al. [115] investigated the effectiveness the requirement based

clustering based approach for prioritizing the test cases. They performed an empirical

study using two Java programs having multiple versions and requirement document.

The result of the study shows that the use of requirement information to prioritize the

test case is very effective.

Hema sarikanth et al. [116] presented the study of prioritization of the test cases of

build acceptance tests for an enterprise cloud application. Their prioritization process

is based on the historical data of field failure. They found that the two or three

interacting services have a tendency to be involved in the field failure.

Debasish Kundu et al. [117] generate the test cases from UML 2.0 sequence diagram

and prioritize them by using the model information encapsulated in sequence diagram.

Three different prioritization metrics were proposed for prioritization of the test cases.

They also presented an approach for generating the test data by using rule based

matrix.

2.29 TEST CASE PRIORITIZATION BASED ON VARIOUS ALGORITHMS

In this section various test cases prioritization based on various algorithms is

presented.

Sangeeta Sabharwal et al. [118] proposed a technique for prioritizing the test cases

scenarios by identifying the critical path clusters by using genetic algorithm. They

derived the test cases scenarios form the state chart diagram and UML activity

42

diagram. For calculating the information flow complexity associated with each node

of the activity diagram and state chart diagram information flow metric is adopted.

A heuristic – based regression test case prioritization [119] technique prioritize the

test cases in the base of the analysis of dependency model of the source program. The

Technique construct an intermediate dependency model of a program and use this

model to determine the affected nodes which are updated in the model after making

modification. The union of forward slicing corresponding to each change in model is

used to determine the affected nodes in the constructed model. The test cases are

selected on the basis of the covering the affected nodes and further prioritized on the

basis of weight assigned to the affected nodes.

Samaila Musa1 et. al. [120] presented a technique to prioritize the test cases of the

object oriented software. The technique is based on analysis of dependency graph

model and use the generatic algorithm to optimize the selected test cases. The test

cases are ordered by computing the fitness value using the previous history of fault

severity.

A model based [121] test case prioritization prioritizes the test cases on the basis of

the analysis of clusters. The test cases are ordered using the degree of the preference.

Unsupervised neural network and fuzzy c-means clustering algorithms are used to

make the preference group. The preference degree is determined of each test case by

computing mean of clustering of event using 13 attributes.

Abu Bakar Md Sultan et al. [122] presented a regression test case prioritization for

object oriented systems based on the dependence graph model of affected program

using genetic algorithm. ESDG (Extended System Dependency Graph) was proposed

to find the statement level changes in the source code. The identified changes are

stored in a file named changed and coverage information for each test case is

generated from source code. Then the selected test cases are prioritized using genetic

algorithm.

A meta – heuristics [123] techniques used to optimize and prioritize the test cases.

The technique comprised the genetic algorithm and particle swarm algorithm. Initially

43

the generating algorithm generates the initial population randomly and genetic

operators are applied on population. The output of the genetic algorithm is given to

the particle swarm optimizer as input.

Surendera Mahajan et al. [124] presented a test case prioritization technique for

component based software module level testing. They developed the component

based software prioritization framework with the objective to detect the more extreme

bugs at earlier stage and quality enhancement by using the genetic algorithm and java

decoding technique. For prioritization they proposed prioritization keys which are

project size, scope of the code, information stream, bug inclination and impact of bug

and faults.

Shaloni Ghai et al. [125] proposed a test case prioritization technique using hill

climbing approach. They prioritized the test cases according to their functional

importance. Functional importance is calculated using automated slicing.

S. Kumar Mohapatra et al. [126] used the ant colony optimization algorithm to reduce

the test cases. For experimental validation the proposed approach has been applied on

various programs implemented in java. The findings of the experiment show more

promising results as compared to other reduction algorithm.

S. Raju et. al. [127] proposed a requirement based system level test case prioritization

technique to find out the maximum error in early stage. They used the genetic

algorithm to improve the quality of software. They considered the factors such as

customer priority, change in requirement, implementation complexity, completeness,

traceability and fault impact.

The structural testing technique [128] is generate the test cases. For generating the test

cases, a genetic algorithm is applied. The generating test cases cover its def- use

associations. The structural testing technique used the K Mean clustering algorithm to

categorize the generated test cases in the different groups.

Ahlam Ansari et al. [129] proposed an approach for regression test case prioritization

approach using ant colony optimization algorithm. The approach firstly takes the test

44

cases which have covered the maximum faults followed by the selection of test cases

covering the remaining faults.

Erum Ashraf et al. proposed [130] a value based practical swarm intelligence

algorithm for prioritizing the test cases. They introduced the combination of the six

factors for performing the test case prioritization. These factors are the customer

priority, Requirement volatility, implementation complexity, requirement traceability,

execution time and fault impact of requirement. Every factor has assigned a positive

weight value in the range of 1 to 10.

Gregg Rothermel et al. [131] transformed software architectures in to intermediate

representation called architectures component dependence graph (ACDG). A slicing

algorithm was presented which is based on marking and unmarking the in–service and

out-service edges on an ACDG, dependencies arises and occurrence of events.

2.30 TEST CASE PRIORITIZATION USING RISK FACTORS

In this section various test case prioritization technique on the based on the risk

factors are discussed.

A test case selection and prioritization technique [132] using the 0-1 integer

programming is presented to minimize and prioritize the test cases. The proposed

approach is based on requirement priority, risk severity and statement coverage. The

test cases are selected from the test suite using given time constraint. The selected test

cases are prioritized using the value of requirement and risk. The 0 -1 programming is

used as each decision variable and have 1 for selection and 0 for non selection.

Miso Yoon et al. [133] proposed a technique to prioritize test cases through

correlation of requirement and risk. They find out relevant test cases by calculating

the risk exposure value of requirement and by analyzing risk items. The basic concept

of the risk based testing is to have more focus on area of software which has higher

risk exposure rather than other area.

45

Charitha Hettiarachchi et al. [134] presented risk based test case prioritization

technique. The risk related to the requirements is estimated by using the fuzzy expert

system. From the result outcome it has been observed that proposed approach can

detect maximum faults earlier in highly risk components compared to other

techniques.

Wasiur Rahman et al. [135] proposed a model for prioritizing the test cases based on

fuzzy logic. For capturing the behavior of the system, state diagram and risk

information associated with the test cases is used. They classified the test cases in

resettable, reusable and obsolete.

Hema Srikanth [136] et al. proposed a requirement based test prioritization technique

using risk factors. They extended their earliest approach PORT 1.0 to PORT 2.0.

They used two factors customer priority and fault proneness to prioritize the test

cases. From the experimental outcome they observed that there is a strong correlation

between CP and FP. In addition to use of two factors CP and FP they also presented a

risk based system level test case prioritization.

2.31 TESTING TOOLS OF OBJECT ORIENTED SYSTEM

In this section a review of various research papers related to testing tool of object

oriented software is presented.

The GenRed[137] tool is used to reduce the number of test cases and for achieving

high code coverage. This tool is based on three approaches: input on demand creation,

coverage based method selection, and sequence based reduction technique. This tool

overcomes random testing techniques.

A frame work to test object [138] oriented programs from em formal specification to

em test data generation by specifying in Z notation of object oriented program has

been presented by the Ming-chi Lee. The dynamic behavior of object oriented

program is represented by driven a state transition diagram (STD) from Z

specification. By using of STD test data are generated. A testing algorithm modeled

by em finite machine is also proposed to run again test data.

46

Tao Xie et al. [139] proposed a framework named Diffut for differential unit testing

of object oriented programs. The proposed framework simultaneously executes the

pair of corresponding methods from the two versions. The method takes the same

input and framework compares the output of methods. The framework automatically

generates the wrapper classes and inserts the annotations of the java modeling

language.

The Framework [140] proposes a scheme of incorporating test support code as built-

in test (BIT) components and also encapsulating them into framework‟s hot spots so

that defects caused by modification and extension of framework can be easily

detected through testing. A framework consists of frozen spots and hot spots. Frozen

spots can be shared among applications and hot spots can be adapted or extended

according to application. So whenever a framework is extended or adapted for reuse it

must be tested for progressive and regressive faults. Thus by using those BIT

components through testability of framework can be increased.

Jehad Al Dallal et al. [141] presented a technique to build test suite for hook

methods and also introduces an automated testing tool for testing process. The

presented tool has four inputs. These inputs are framework under test, formal hook

description, the hook under test and select data generation.

Taweesup piwattanapong et. al [142] presented a technique for comparing the two

versions of object oriented programs based on a representation. The representation

can handle the features of object oriented and captures the behavior of object oriented

programs. The proposed technique identified the difference and correspondence

between the programs. They also proposed a tool called J Diff for implementation of

the technique. The tool is used for Java programs.

Amie L. Souter et. al [143] presented the code based testing and analysis testing tool

for object oriented software. This tool provides a systematic approach for testing

towards behavior of object and particularly intergradations testing of class.

47

The CASE tool is used to support cluster [144] level testing. They also blueprint the

design and implementation of CASE tool and discussed the analysis for pointer and

reference.

Jitenedra S. Kushwaha et al. [145] developed and automated testing tool for object

oriented software. The proposed automated testing tool includes test case generation,

test case execution test data generation reporting and logging results. The proposed

work mainly focused on testing design specification for object oriented software.

Anna Derezinska et al. [146] presented the C# mutation testing system that supports

object – oriented mutation operators . In this paper they discussed the advances in the

CREAM2 including code parsing improvement , preventing generation of invalid

and partially of equivalent mutants , cooperation with distributed tester

environment . They performed experiments and showed that the new version of

CREAM2 system generate object oriented mutants more precisely than the previous

one conducted at three levels which are unit, integration and system testing. The

main components of testing tool are test order generation, test case generator for state

based class testing and change impact identification for classes.

Christian Engel et al.[147] identified about integrating verification and testing

techniques of object-oriented software. KEY verification system has been used to

integrate both of these techniques. KEY is a system written in Java for deductive

verification of object-oriented software. KEY currently integrates with two CASE

tools: Boroland Together and Eclipse IDE. A whole software project can be

developed with either of CASE tools and KEY verification component can be used

for verification of software.

Bor Yuan Tsai et al. proposed an approach of object [148] oriented class testing

which is combination of functional and structural testing. For execution of functional

testing based on state based testing test cases and for data analysis MCAT (Method

for Automatic class testing) tool was used.

48

Recardo Terra et al. [149] presented domain specific language to restrict the spectrum

of dependencies that are allowed in object oriented system. They also explained a

checking tool. The violations of proposed constraints are detected by this tool.

Hyunsook Do et al. [150] performed an experimental study of test case prioritization

techniques for java programs tested under JUnit testing framework. The results show

that test case prioritization techniques can significantly improve the rate of fault

detection of JUnit test suites.

The technique for selective regression testing and associated tool for object oriented

software is [151] based on the concept of control call graph. The technique used static

analysis of code of the program. The developed tool combined with impact analysis

identifies impacted call paths that needed to be retested, select the test cases from an

existing test suite and generation of new test cases if required.

2.32 CONCLUSION

From the critical review of the above literature, it has been observed that the various

researchers presented their work for performing the effective testing of object oriented

software. Almost in the every concern related to the testing of object oriented

software, various researchers proposed their techniques whether it is complete testing

of a software, regression testing , prioritization of test cases and automated tools for

testing the software. They considered the important factors that affect the testing of

object oriented software. A pointed overview is shown below

(1) The various researchers used slicing of program, program dependency graph,

control dependency graph, data dependency graph, directed graph for

performing testing.

(2) The researchers also used model, data flow, state, fault, specification,

coupling for performing effective testing of the software.

(3) They also considered and proposed various metrics like DCH, MRC, dynamic

metrics, design metrics, object oriented metrics, classification of metric and a

basic metric of object oriented design.

49

(4) Impact of coupling and cohesion, security concern, software complexity also

considered.

(5) They also used genetic algorithm, ant colony , hill climbing algorithm etc. to

prioritize the test cases.

(6) Researchers also presented some issues related to the testing of the object

oriented software. They classified the problem related to the testing of object

oriented software

(7) Researchers presented the relation between the cyclomatic complexity and

degree of object orientation.

(8) Researcher presented security issues related to architecture of object oriented

software and a security model for assessment.

In the previous work there are some critical issues related to the testing of the object

oriented software that are not discussed yet. There should be design metric on which

issues related to design may be tested. There is no any framework and technique that

reduces the cost and time for testing the software. In object oriented software there are

some critical factors which play critical role in developing the software. If these

factors are not used in proper way they might affect the working of the software.

These factors are exception handling, multithreading, use of pure virtual function,

virtual function etc. There should be software metric on which prioritization of test

cases is performed with the intent to the find the errors early. Some of these issues

have been discussed in this work which is presented in the next chapters.

50

51

Chapter III

UNIT AND INTEGRATION TEST CASE

PRIORITIZATION TECHNIQUES: PROPOSED WORK

3.1 INTRODUCTION

In this chapter, test case prioritization techniques to prioritize the test cases at Unit

testing, Integration testing of object oriented software is presented. The four

techniques are proposed to prioritize the test cases. The proposed techniques use some

factors to prioritize the test cases. These proposed techniques are

 A Multi - Factored Cost and Code Coverage Based Test Case Prioritization

Technique for Object Oriented Software.

 A Structural Analysis based Test Case Prioritization Technique for Object

Oriented Software.

 Test Case Prioritization Technique for Object Oriented Software Using

Method Complexity.

 A Coupling Analysis based Test Case Prioritization Technique for Object

Oriented Software.

All the proposed techniques are explained and validated by applying on some case

studies in the subsequent sections.

52

3.2 A MULTI - FACTORED COST AND CODE COVERAGE BASED TEST

CASE PRIORITIZATION TECHNIQUE FOR OBJECT ORIENTED

SOFTWARE (MFCCTCPTOOS)

The presented approach prioritizes the test cases on the basis of the cost and the

coverage of the code covered by the test case. For accurately finding out the cost of

the test case, some factors are considered as shown in the Table 3.1. The proposed

approach works at two levels. At the first level all the considered factors existed in the

source code are identified. After identification and counting the factors all

independent paths of the source code are resoluted then the value of the cost of each

path is determined on the basis of the coverage of the identified factors. Test cases are

selected corresponding to independent paths. The cost of the test case can be

calculated by using Formula 3.1.

The code coverage of test case is determined by counting lines of code executed by

the test case. At the second level pairs of cost and code value of each test case are

created. In this way by using the value of the cost and code coverage the test cases are

prioritized. The following scenario is used for prioritization of the test cases

(1) Highest code coverage and cost will have highest priority

(2) Second priority is given to test case that has highest cost value on the basis of

covered factors

(3) Third priority is given to test case that has highest code coverage.

(4) Test cases with the equal code coverage and cost be ordered

The overview of the proposed approach is shown in Figure 3.1

53

Figure 3.1: Overview of the Proposed Approach (MFCCTCPTOOS)

Cost (Ti) = SF(Ti) / TF ……………………………. (3.1)

Where SF is the sum of the factors covered by the i
th

 test case, TF is the sum of the

all existing factors in source code.

3.2.1 Considered Factors For Prioritizing Test Cases

As shown in Table 3.1, the factors are considered by the structural analysis of the

program. The considered factors may affect the testing process in term of

consumption of memory, execution time and the possibility of introducing the errors

in program.

Non prioritized test cases

Determine all factors existing in source

program and factors which are being covered

by individual test cases

Execute the test cases in prioritized order

Prioritize the test cases using calculated value

of cost and code coverage

Calculate the cost and code covered by each

test cases

54

Table 3.1: Proposed Factors (MFCCTCPTOOS)

S. No. Proposed Factor

1 Operators

2 Variables

3 External System Call

4 Predicate Statement

5 Assignment Statement

6 Use of Libraries/ Packages

7 Virtual Function/ Functions

8 Exception Handling

9 Other Factors

The algorithm of the proposed approach is given in Figure 3.2.

3.2.2 Result and Analysis

For the experimental validation and evaluation, the proposed approach has been

applied on the two programs. The programs are implemented in the C++ language.

For the experimental analysis intentionally faults are introduced in the programs. The

program one (see Appendix A) has 170 lines of code, program [152] two has 361

lines of code.

Table 3.2 shows the various factors covered by the test cases, Table 3.3 shows the line

of code covered by the test cases, Table 3.4 shows the calculated cost of all test cases

that are used to test the software, Table 3.5 shows the various pairs of cost and code

covered by the test cases.

55

Figure 3.2: Algorithm of the Proposed Approach (MFCCTCPTOOS)

Table 3.2: Factors Covered by Test Cases

Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Operators 4 4 0 0 1 7 0 0

Variable 3 3 1 4 2 3 1 4

Native method 0 0 0 0 0 0 0 0

Control statement 0 1 0 0 0 2 0 0

Assignment 3 2 0 0 1 2 0 0

SF 10 10 1 4 4 12 1 4

 Let T be is the list of non prioritized test cases and T‟ be the list of the prioritized test cases.

While (T not empty)

Begin

Step 1. Identify and Count all the considered factors that are used in the source code.

Step 2. Determine the factors and line of code being covered by the test cases.

Step 3. Calculate the cost by applying the formula on test cases.

 Cost (Ti) = SF(Ti) / TF

Where SF is the sum of factors covered by the test case and TF is the sum of the factors in the

source code

 End

Step 4. Determine all possible pairs of the code coverage value and cost value of each test case.

 Pair = (Code Coverage, Cost)

Step 5. Prioritize the test cases in the following scenarios

(1) Highest the value of cost and code covered by the test case have highest priority

(2) Second priority is given to test case that has highest cost value.

(3) Third priority is given to test case that has highest code coverage.

(4) Test cases with the equal value of the code coverage and cost be prioritized in the random

order.

Create T‟ the list of prioritize test cases.

56

Table 3.3: Line of Code Covered by Test Cases

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Line of Code 36 42 31 36 34 48 31 36

Table 3.4: Calculated Cost of Test Cases

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Factor Coverage

(SF)

10 10 1 4 4 12 1 4

Total

Factors(TF)

35 35 35 35 35 35 35 35

Cost 0.2857 0.2857 0.0285 0.1142 0.1142 0.3428 0.0285 0.1142

Table 3.5: Pairs of the Cost and Code Coverage by Test Cases

S. No Test Case Pairs

1 TC1 (36, 0.2857)

2 TC2 (42, 0.2857)

3 TC3 (31, 0.0285)

4 TC4 (36, 0.1142)

5 TC5 (34, 0.1142)

6 TC6 (48, 0.3428)

7 TC7 (31, 0.0285)

8 TC8 (36, 0.1142)

The prioritized order of test cases as determined by the proposed approach is TC6,

TC2, TC1, TC4, TC8, TC5, TC3, and TC7.

57

Faults Detected by Test Cases in Non Prioritized Order

The faults are identified in the non prioritized order as shown in Table 3.6.

 Table 3.6: Faults Detected by Test Cases in Non Prioritizing Order

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

F1 * * * * * * * *

F2 * *

F3 *

F4 *

F5 *

F6 *

F7 *

F8 *

F9 *

F10 *

Faults Detected by Test Cases in Prioritized Order

The Table 3.7 shows the faults detected by the test cases when they executed in

prioritized order

Table 3.7: Faults Detected by Test Cases in Prioritize Order

 TC6 TC2 TC1 TC4 TC8 TC5 TC7 TC3

F1 * * * * * * * *

F2 * *

F3 *

F4 *

F5 *

F6 *

F7 *

F8 *

F9 *

F10 *

58

For simplicity of the approach the faults are detected for only one program. After this

the comparison of two approaches in term of APFD is shown in Figure 3.3 and Figure

3.4.

3.2.3 Comparison of APFD Graphs of Prioritized and Non Prioritized Order

of Test Cases for Two Programs

Figure 3.3: APFD Graph of Non Prioritized Order of Test Cases

 Figure 3.4: APFD Graph of Prioritized Order of Test Cases

0%

20%

40%

60%

80%

100%

120%

T1 T2 T3 T4 T5 T6 T7 T8

P
er

ce
n

ta
g

e
o

f
D

et
ec

te
d

 F
a

u
lt

s

Test Cases Executed

Unprioritized order

(APFD = 57%)

0%

20%

40%

60%

80%

100%

120%

TC6 TC2 TC1 TC4 TC8 TC5 TC3 TC7

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Test Case Executed in Prioritized Order

Prioritized Order
(APFD = 70%)

59

The same approach was applied on a Program 2 of Income Tax Calculator [176]

implemented in C++ programming Language. The considered program has 361 lines

of code. For experimental validation of the approach 24 faults have been added

intentionally and detected by 19 test cases. The APFD of non prioritized order and

prioritized order of the test cases is shown in Figure 3.5 and Figure 3.6.

Figure 3.5: APFD Graph of Non Prioritized Order of Test Cases

Figure 3.6: APFD Graph of Prioritized Order of Test Cases

0%

20%

40%

60%

80%

100%

120%

5
%

1
5

%

2
5

%

3
5

%

4
5

%

5
5

%

6
5

%

7
5

%

8
5

%

1
0

0
%

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Percentage of Executed Test Cases

Non Prioritized Order
(APFD = 55%)

0%

20%

40%

60%

80%

100%

120%

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Percentage of Executed Test Cases

Prioritized Order
(APFD = 72%)

60

3.2.4 Effectiveness of the Proposed Approach

The effectiveness of the proposed approach is measured through APFD metric and its

value is shown in Table 3.8. The APFD value of prioritized order of test cases

obtained by applying the proposed approach is better than non prioritized order of test

cases. Therefore it can be observed from the Table 3.8 prioritized test cases has higher

fault exposing rate than the non prioritizing test cases.

Table 3.8: Compared Result of Test Cases for Prioritized and Non Prioritized Order

Case Study Non Prioritized Test Cases

(APFD)

Prioritized Test Cases

(APFD)

Program 1 57% 70%

Program 2 55% 72%

3.3 A STRUCTURAL ANALYSIS BASED TEST CASE PRIORITIZATION

TECHNIQUE FOR OBJECT ORIENTED SOFTWARE (SATCPTOOS)

The proposed approach works at three levels. At the first level intermediate

representation of the program objected oriented control flow graph (OOCFG) is

created by analysing the structure of the program. At the second level by analysing

the OOCFG graph all the independent paths of a program are determined and there by

test cases are selected corresponding to every independent path. Finally at the third

level the test cases are prioritized on the basis of coverage of factors. The overview

of the proposed approach is shown in Figure 3.7

61

Figure 3.7: Overview of Proposed Approach (SATCPTOOS)

All the considered factors have been assigned a weight on the basis of possibility of

faults introduced by the factors. To verify and assign the significant weight of factors

a survey (see Appendix C) has been performed. The conducted survey focuses on

factors, which affect the testing of the software. The participants involved in survey

are the software developer, tester, tech lead etc. having average experience of 8 years

in software industries. To examine the view of participants the survey questionnaire

was submitted among several software developers and testers in various software

industries.

Based on the criticality of the factors a weight is assigned to proposed factors. The

assigned weight shows the capability of introducing the errors in the program. The

weight metric of the proposed factors are as shown below in the Table 3.9.

Source Code

Intermediate Representation of Program

Identification of Independent paths

and mapped with test Cases

Test Case Prioritization

Execution of Prioritized Test Cases

62

Table 3.9: Proposed Factors and Assigned Weight (SATCPTOOS)

S. No Factor Weight

1 Class/Interface .05

2 Type Casting .15

3 Exception handling .3

4 Method overriding .2

5 Native method .1

6 Nested class .05

7 Conditional Statements .05

8 Number of method .1

The discussion of the proposed factors is given below

 Class: Class is a basic unit for the test case design. The intended use of a

class implies different test requirements. Testing a class instance can verify a

class in isolation. However when these verified classes are used to create

objects in an application system must be tested as whole before it can be

considered verified

 Type Casting: Type casting is a way of changing one type of data into the

other type of data. During the development of software sometimes, it is

essential to convert the type of data to fulfil the customer expectation or

requirement for implementations of the software. In past practice it has been

observed that many big projects failed or crashed due to some mathematical

errors. Sometimes software is very hard bound to their numerical value. They

don‟t deal any type of minor mistake in the value. At the time of development

63

the programmers are not aware about the consequence of the error but later it

may become the reason of causing many errors thereby increasing the cost and

development time of software. So in the development if the developers are

using the type casting they should properly test whether they have given the

proper formatted value or not.

 Exception handling: Exceptions handling is procedure of responding to the

occurrences of the exceptions. Basically the exceptions are the error that arise

either at the run time or compile time. For instance in Java the exception that

comes at compile time is called checked exception whereas that exception that

comes at run time is called unchecked exception. During the computation of

programme, exceptional conditions often change the normal flow of the

program execution. If the properly exceptions are not handled at the right time

they may corrupt the data.

 Native Method: Native methods are the methods which are implemented in

other language and used in the current language used for developing the

software. e.g. the functions implemented in C/C++ are used in the Java

language. For executing the native method the libraries of native method are

required. So, there may be higher chance of occurrences of the errors due to

use of native method. Because native methods are implemented in other

language so it is very hard to detect the error. So if there is any use of native

method then it must be tested properly.

 Method overriding: Method overriding is used to provide a specific

implementation to a method in subclass that is already provided by one of its

base class. The method in the super class and the override method in the base

class have same name, same parameters, and same return time. At run time

the object will determine which version of the method is executed. So, there is

need to be proper calling of the method. If the proper version of method is not

executed as per requirements then it will give wrong results. So, there is need

64

to design the test cases to test all possibility of correctly invoking of all

different versions.

 Method: There may be a chain of methods to implement the user

requirements. A tester needs to understand the sequence of the methods

invocation and also design the test accordingly to the sequence of methods.

 Conditional Statements: Each condition in a decision may have possible

outcomes. The coverage of condition does not mean that the decision has been

covered. It requires adequate test cases such that each condition in a decision

takes on all possible outcomes at least once. So it is essential to take all the

possible combinations of the conditions that are used in the application

system.

 Nested Classes: Nested class is the special feature of the object oriented

language. Nested class is used to resolve the issue of the naming and for

purpose of containment. There is no requirement of special testing if nested

class is viewed as naming issue but in lieu of purpose of containment a

multilevel testing strategy is required.

3.3.1 Representation of the Program in Intermediate Form

In this section program is represented in the intermediate representation. For

representation of program some symbolic notation are presented which are shown in

the Figure 3.8. The intermediate representation shows execution flow of the program.

Since the program structures of object oriented program are different from the

conventional program so here some representations are presented which represent the

features of the Object Oriented Programming System (OOPS) i.e. class, interface,

method, method overriding, nested class, exception handling etc.

65

Figure 3.8: Representation of Various Features

3.3.2 Identification of Independent Paths

By using the representations showing in the Figure 3.9 the OOCFG of program is

created which are further analysed to identify all the independent paths. After

determining all the independent paths are mapped to test cases.

3.3.3 Test Case Prioritization

Mapped test cases are prioritized on the basis of the proposed 8 factors. The test cases

are prioritized on the basis of the coverage of the factors. Test case with the highest

coverage value has the highest priority of execution as these factors show the

critically of the test case based on coverage of factors. Thus a test case with highest

criticality will have the higher probability of error to be found out.

66

By using the Table 3.10 these test cases are prioritized using the Formula 3.2

 n

TCPW = ∑ fvaluei * fweighti ---------------------------(3.2)

 i= 1

where fvalue is the values of factors covered by test cases, fweight is the weight

assigned to the factor which shows the criticality of the factor , TCPW is the

calculated weight of the test cases. On the basis of TCPW the test case are prioritized.

More the complexity of the test cases more the probability of the error to be detected

by test cases.

3.3.4 Result and Analysis

For evaluation and analysis of proposed approach it has been verified and analyzed by

applying on a case study of (Appendix A) software. The considered case study

performs the various functionalities like to calculate the gross salary, saving,

deduction, taxable income, and tax to be paid by the employee. To determine the

efficacy of the proposed approach some faults have been added in the software

intentionally .The OOCFG of considered case study are shown in Figure 3.9.

After analyzing the Figure 3.9 independent paths are determined. To test the

considered software each and every independent path need to be tested. So test cases

should be selected or designed for each independent path. All the independent paths

and Ids of test case are shown below in Table 3.10.

67

Figure 3.9: OOCFG of Considered Case Study

68

Table 3.10: Independent Path and Test Cases Corresponding to the Independent Paths

S.No. Independent path Test case ID

1 A,B,C TC1

2 A,L,D TC2

3 A,E,B,Ea,Eb,Ed, F TC3

4 A, E, B, Ea,Ec,Ed, F TC4

5 A,E,B,Ea,Eb,Ed, k TC5

6 A, E, B, Ea,Ec,Ed, F TC6

7 A, G TC7

8 A, H,He,Hf,Hh,I TC8

9 A, H,He,Hg,Hh,I TC9

10 A,j, H,,J,Jj,Jk,Jm, M TC10

11 A,j, H,J,Jj,Jk,Jn, M TC11

After determining the independent paths and mapping the test cases corresponding to

all paths, now test cases are prioritized. The Table 3.11 shows the factors covered by

the test cases.

69

Table 3.11: Factors Covered by the Test Cases

S.

No

Factors to be

covered

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 Weight

Of

Factors

1 No. of Class 2 2 3 3 4 0 2 2 2 3 3 .05

2 No. of Nested

Class

0 1 0 0 0 0 0 0 0 0 0 .05

3 No. of

method

2 2 3 3 4 0 1 1 1 2 2 .1

4 No. of

override

method

0 0 1 1 0 0 0 1 1 1 1 .2

5 Exception

Handling

0 0 0 0 0 0 0 0 0 1 1 .3

6 Type

Casting

1 0 1 1 1 0 0 1 1 1 1 .15

7 No. of Native

Method

0 0 0 0 0 0 0 0 0 0 0 .1

8 Conditional

Statement

0 0 1 1 1 0 0 1 1 1 1 .05

The test case are prioritized on the basis of TCPW obtain by applying the Formula

3.2. Highest value of TCPW of the test cases highest the priority of the test case to be

executed. The Table 3.12 shows the TCPW of the all selected test cases.

70

Table 3.12: Calculated Value of TCPW.

S.

No

Factors to

be covered

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 Weight

Of

Factors

1 No. of Class .1 .1 .15 .15 .2 .2 .1 .1 .1 .15 .15 .05

2 No. of

Nested

Class

0 .05 0 0 0 0 0 0 0 0 0 .05

3 No. of

method

.2 .2 .3 .3 .4 .4 .1 .1 .1 .2 .2 .1

4 No. of

override

method

0 0 .2 .2 .2 .2 0 .2 .2 .2 .2 .2

5 Exception

Handling

0 0 0 0 0 0 0 0 0 .3 .3 .3

6 Type

Casting

.15 0 .15 .15 .15 0 0 .15 .15 .15 .15 .15

7 No. of

Native

Method

0 0 0 0 0 0 0 0 0 0 0 .1

8 Conditional

Statement

0 0 .05 .05 .05 0 0 .05 .05 .05 .05 .05

 TCPW .45 .35 .85 .85 1.0 1.0 .2 .6 .6 1.05 1.05 1

By using the calculated TCPW of each test case form Table 3.12 the prioritized

order of the test cases are TC10, TC11, TC5, TC6, TC3, TC4, TC8, TC9, TC1, TC2,

TC7.

71

Fault Detection in Non Prioritized Order

The Table 3.13 shows the detected faults when the test cases are executed in the non

prioritized order.

Table 3.13: Faults Detected in Non Prioritized Order

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11

F1 * * * * *

F2 *

F3 *

F4 * *

F5 *

F6 * *

F7 * *

F8 *

F9 * * * *

F10 * *

F11 * *

F12 *

F13 *

F14 * *

Calculated APFD for non prioritized order of Test cases: 52%

72

Fault Detection in Prioritized Order:

The Table 3.14 shows the detection of faults when the test cases are executing in the

prioritizing order which obtain after applied the approach

Table 3.14: Faults Detected in Prioritized Order

 TC 10 TC 11 TC5 TC6 TC3 TC4 TC8 TC 9 TC1 TC2 TC7

F1 * * * * *

F2 *

F3 *

F4 * *

F5 *

F6 * *

F7 * *

F8 *

F9 * * * *

F10 * *

F11 * *

F12 *

F13 *

F14 * *

Calculated APFD for Prioritized order of Test cases: 64.5 %

The APFD graph shown in Figure 3.10 and Figure 3.11 shows that the APFD value

obtained from the proposed approach is better than the non prioritized approach. The

result shows the efficacy of the proposed approach.

73

 Figure 3.10 APFD Graph for Non Prioritized Approach

Figure 3.11: APFD Graph for Proposed Approach

The same approach was applied on another football player information system [153]

that implemented in the C++. The APFD graph of comparison of the proposed and

non prioritized approach is shown in Figure 3.12 and in Table 3.15.

74

Figure 3.12: Comparison between the Proposed Approach and Non Prioritized

Approach

Table 3.15: Case Study 2 Results (APFD)

Projects Strategy APFD results

Case Study2 Non Prioritized 72%

Proposed 80%

3.4 TEST CASE PRIORITIZATION TECHNIQUE FOR OBJECT

ORIENTED SOFTWARE USING METHOD COMPLEXITY

(TCPTOOSUMC)

In the presented approach firstly source code is represented in the intermediate form

called the method call graph (MCG) followed by the determination of the complexity

75

of the each method used in the call graph. The complexity of a method is calculated

by using volume and difficulty of a method, which are further determined by the

factors identified by the structural analysis of the source code. The factors which are

used to determine the method complexity are given in Table 3.16.

Table 3.16: Considered Factors and Assigned Weight (TCPTOOSUMC)

S.No Factor Name Weight

1 Degree of Method(DM) 0.6

2 No. of Input Variable(IV) 0.3

3 Decision statement (DS) 0.4

4 Type Casting(TC) 0.6

5 Numerical computations(NC) 0.4

6 Number of loop(LS) 0.5

7 Number of variable reused (VR) 0.2

8 Copying of objects (CO) 0.3

9 Object/Data reads from database/File(RW) 0.6

10 Exception handling (EH) 0.7

11 Virtual function (VF) 0.9

12 Dynamic memory allocation and deallocation (MA) 0.8

13 Reference counting (RC) 0.2

14 Proxy Objects (PO) 0.3

15 Type binded inherited Function (TIF) 0.8

16 Copy constructor having pointer type variable (CPV) 0.4

17 Non virtual destructor (NVD) 0.2

18 Return object by reference (RO) 0.2

76

Every considered factor has been assigned a factor weight which indicates the

difficulty to test the factor and posses the higher probability of the errors.

For determination of the weight of considered factors a survey was performed in

various industries (See Appendix B). The survey was performed among Developers,

Senior Developer. Technology Lead, Associate Architect Group Leader and Project

Manager with an average experience of seven years. From the survey approximate 80

responses were received from participants and same data was compiled for

determination of the assigned weight. The overview of the proposed approach is

shown below in Figure 3.13.

For process of prioritization of test cases, value of Volume and difficulty of a method

can be used. The determination of the value of the volume, difficulty and complexity

of a method can be given as below:

Volume of a method (VM) can be calculated by Formula 3.3.

 VM(mi) = FM/TF ---------------------------- (3.3)

Where FM is the number of considered factors in ith method and the TF is the total

count of considered factors in the whole software i.e in whole method existed in the

software.

Difficulty of a method (DM) can be calculated by the Formula 3.4

 n

 DM(mj) = ∑Fi*Wi -------------------------------- (3.4)

 i=1

Where Fi is the number of determined ith factors in an jth method and Wi is the weight

assigned to the ith factors.

77

Figure 3.13: Overview of the Proposed Approach (TCPTOOSUMC)

Thus complexity (CM) of each method can be calculated by the Formula 3.5

 CM(mi) = VM * DM --------------------------(3.5)

Where VM is the volume of the ith method and DM is the estimated difficulty of ith

method.

Source Code

Represent the source code in intermediate form

method call graph (MCG)

Determine all the considered factors in

methods used in source code

Identify all the feasible paths and determine the

complexity value of each path

Prioritize the paths on the basis of the

determined complexity value of the path

Test case are selected corresponding to

Prioritized paths and executed in prioritized order

Calculate the value Volume of method (VM) and Difficulty of

method (DM) and Complexity (CM) of every method

78

After calculating the value of CM for all methods, all the feasible independent paths

from method call graph are identified. The path prioritization value (PPV) is

determined for each path which is sum of the calculated method complexity (CM) of

methods that are used in the path. The PPV is calculated by the Formula 3.6.

 n

 PPV = ∑ CMi---------------------------------------(3.6)

 i=1

More the PPV value of the path, more is the complexity of the path and in turn the

higher chances of error. So paths are prioritized on the basis of the PPV. After path

prioritization, test cases are selected corresponding to each path and executed in the

order of the paths. If any path has more than one test case then these are prioritized on

the basis of considered factors covered by the individual test case.

The algorithm of the proposed approach is shown in Figure 3.14. The presented

algorithm takes the source code as an input and converts them into method call graph

(MCG) by using Create_MCG function. The volume and difficulty of each method is

calculated by identifying the considered factors in each method and using the Formula

3.3 and Formula 3.4.

The function Compute_complexity determines the method complexity by using the

Volume of a method and difficulty of a method. The MCG is used to identify all the

feasible paths in the software and determine the methods covered in each path. The

output of Compute_complexity is used to calculate the path prioritization value which

is further used to prioritize the test cases.

79

Figure 3.14: Algorithm of Proposed Approach (TCPTOOSUMC)

Let S be a source code, T be the set of non prioritized test cases and T‟ be the prioritized test cases.

1. Create_MCG(S)

Find out all the methods used in the source code and create the method call graph (MCG) of source

code

 2 . while (method)

 Begin

 Determine the Volume of each method using the formula 3.3

 End

 3. While (method)

Begin

 Determined the difficulty of each method by using the formula 3.4

 End

4 While (method)

Begin

 Compute_complexity(VM, DM)

 Begin

 Find out the value of Complexity of each

 Method (CM) by using the formula 3.5

 End

End

5. All the feasible independent method call paths are identified.

6. Determined the PPV of the each path using the formula 3.6

7. Paths are prioritized on the basis of the determined value of PPV

8. Test cases are selected corresponding to each path and T, be the set of prioritize test cases.

80

3.4.1 Result and Analysis

For experimental verification and analysis, the presented approach has been applied

on a billing management system [154] implemented in the C++ programming

language. The considered software performs various functions like place order, create

product, modified product, delete product etc. For experimental verification,

intentionally some errors are introduced in the software and introduced errors were

discovered by applying the proposed approach. The finding of the case study is given

below

The Figure 3.15 shows the method call graph of the considered case study. In this

graph, all the methods that are used are connected by using the direction arrows which

shows the sequence of the calling of the methods. By analyzing the sequence of the

calling methods all the feasible independent paths and methods covered in each path

are determined.

Figure 3.15: Method Call Graph (MCG) of Case Study

main()

admin_menu()

show_product()

write_product() modify_project()

detailed_product()

display_all()
display_sp()

retdis()

retprice()

retname()

retpno()

)

menu()

placeorder

der

create_product()

81

The Table 3.18 shows the methods used in the software and the count of considered

factors identified in each method. The value of volume, difficulty and complexity of

each method after computation is also given in the Table 3.17.

Table 3.17: Determined Value of VM, DM and CM

S. No.

Method Name Factor

determined

VM DM CM

1 Place_ order IV=7,LS=3

,NC=1, RW=2

NC=3,VR=1,DM=

2

19/47=.40 (7*.3)

+(3*.5)+(1*.4)

+(2*.6)+(3*.5)

+(1*.2) +(2*.6)

= 8.1

3.24

2 Menu RW =1 ,DS = 1,

LS =01,DM=3

6/47=.12 3.3 .39

3 admin_menu IV=2,CS=1,DM

=12

15/47=.31 9.2 2.8

4 write _product RW=1,DM=2 3/47=.06 1.8 .10

5 create_ product IV =4 ,DM=1 5/47=0.1 1.4 .14

6 modify_ product IV=3,

RW=2,CS=2,LS

=1,VR=1,NC=1,D

M=2

12/47=.25 5.3 1.32

7 display_all RW=1,

LS=1,DM=2

4/47=.08 2.3 .18

8 show_ product IV = 4,DM=3 7/47=0.14 3.0 .42

9 delete_product IV=1,

RW=2,LS=1,CS=1,

DM=2

7/47=.14 3.6 .50

10 display_sp RW=1,IV=2,VR

=1,CS=2,DM=2

8/47=.17 3.4 .57

11 retpno IV =1,DM=08 9/47=.19 5.1 .96

12 retname IV=1,DM=03 4/47=.08 2.0 .16

13 retprice IV=1,DM=02 3/47=.06 1.5 0.09

14 retdis IV=1,DM=02 3/47=.06 1.5 0.09

82

 Table 3.18 shows all the feasible and independent paths that are determined after

analyzing the method call graph and the estimated path prioritization value of each

identified path.

Table 3.18: PPV of All Feasible Independent Paths

S.No

.

Path ID Path Estimated PPV

1 Path1 main(),palce_oreder(),menu(),retpno(),retname(),retprice()

,retdis

3.24+.43+1.12+.

18+0.10+0.10=

4.93

2 Path2 main(), admin_menu(),write_product(),create_product() 3.04

3 Path3 main(),admin_menu(),display_all(),show_product() 3.4

4 Path4 main(), admin_menu,modify_product(),retpno(),

show_product

5.5

5 Path5 main(),admin_menu,display_sp,retpno(), show_product() 4.75

6 Path6 main(),admin_menu,delete_product(), retpno() 4.26

7 Path7 main(),admin_menu,menu()retpno(),retname(),retprice() 4.4

The Table 3.19 shows estimated path prioritization value of each considered path

obtained from MCG and the test cases that execute the identified independent paths.

Now the test cases are prioritized on the basis of estimated cost of paths that are

executed by the test cases. The prioritized order of the test suit is T3, T4, T9, T10, T5,

T6, T8, T7, T2, T1. Now the proposed approach is being compared with random

approach and method coverage [92] based approach. For this purpose faults are

detected by executing the test cases.

83

 Table 3.19: Paths Covered by Test Cases

S.No. Path ID Test cases Estimated Path Prioritization Value (PPV)

1 Path4 T3,T4 5.5

2 Path1 T9,T10 4.93

3 Path5 T5,T6 4.75

4 Path7 T8 4.4

5 Path6 T7 4.26

6 Path3 T2 3.4

7 Path2 T1 3.04

The Table 3.20 shows the faults detected by test cases when these test cases are

executed in non prioritized order.

Table 3.20: Fault Detected by Test Cases in non prioritized Order

Testc

ase

F1 F2 F3 F4 F5 F6 F7 F8 F9 F 10 F 11 F 12 F 13 F 14 F 15 F 16

T1 * *

T2 * *

T3 * * * * *

T4 * *

T5 * *

T6 *

T7 * *

T8 * *

T9 * * * * * *

T10 * * * *

84

To show the efficacy of the approach a metric called average percentage faults

detection (APFD) has been used.

APFD value of non prioritized order of test cases is 54%

The Table 3.21 shows the faults detected by the test cases when these test cases are

executed in prioritized order that has been obtained after applying the proposed

approach.

Table 3.21: Faults Detected by Test Cases in Prioritized Order

The APFD value of prioritized order of test case by applying the proposed approach is

69%

Table 3.22 shows the faults detected by the prioritized test cases obtained by applying

the method coverage based approach.

Test

case

F 1 F2 F3 F4 F5 F6 F7 F8 F9 F 10 F 11 F 12 F 13 F 14 F 15 F 16

T3 * * * * *

T4 * *

T9 * * * * * *

T10 * * * *

T5 * *

T6 *

T8 * *

T7 * *

T2 * *

T1 * *

85

Table 3.22: Faults Detected by Ordered Test Cases Obtained from Method Coverage Based Approach

Test

case

F1 F2 F3 F4 F5 F6 F7 F8 F9 F 10 F 11 F 12 F 13 F 14 F 15 F 16

T9 * * * * * *

T10 * * * *

T8 * *

T3 * * * * *

T4 * *

T5 * *

T6 *

T1 * *

T2 * *

T7 * *

The APFD value of prioritized order of test case by applying the method coverage

based approach is 65%

The Figure 3.16, Figure 3.17 and Figure 3.18 shows the APFD graph of random

approach, method coverage based approach and proposed approach showing the

efficacy of the proposed approach.

86

Figure 3.16: APFD Graph for non Prioritized Approach

Figure 3.17: APFD Graph for Method Coverage based Approach

0%

20%

40%

60%

80%

100%

120%

TC
1

TC
2

TC
3

TC
4

TC
5

TC
6

TC
7

TC
8

TC
9

TC
1

0

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Test Case Executed

Non Prioritized Order
(APFD = 54%)

0%

20%

40%

60%

80%

100%

120%

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Executed Test Cases

Method Coverage
Based Aprch(APFD
=65%)

87

Figure 3.18: APFD Graph for Proposed Approach

The same approach was applied on another software room reservation [155] which

performed all the operations related to reserve a room in hotel. The considered

software has total 1936 line of code and 74 test cases are executed to detect the 56

faults, inserted intentionally. The APFD graph of the non prioritized approach,

method coverage based approach and proposed approach is shown in Figure 3.19.

Figure 3.19: APFD Graph For Non Prioritized, Proposed And Method Coverage Based Approach For

Hotel Room Reservation Software

0%

20%

40%

60%

80%

100%

120%

TC
9

TC
1

0

TC
8

TC
3

TC
4

TC
5

TC
6

TC
1

TC
2

TC
7

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Executed Test Cases

Proposed Approach
(APFD = 69%)

0%
10%
20%
30%
40%
50%
60%
70%
80%

90%

100%

1
0

%
2

0
%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

P
e

rc
e

n
at

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Percentage of Executed Test Cases

Proposed Approach

Non Prioritized Approach

Method Coverage based
Approach

88

3.5 A COUPLING – ANALYSIS BASED TEST CASE PRIORITIZATION

TECHNIQUE FOR OBJECT ORIENTED SOFTWARE (CATCPTOOS)

The proposed approach works at three phases. In the first phase interaction coupling

of all existed individual class is determined. In the second phase the inheritance

coupling and component coupling existed between the classes existed in software is

determined. In the third phase all the possible combination of the classes existed in

the software are determined. The coupling value of determined combination is

calculated by using the determined value of interaction coupling of individual class

and inheritance coupling and component coupling existed between the classes. The

calculated coupling value of each combination helps to determine the coupling value

of each combination of classes. The coupling value shows, how complex and how

implicit the information has to be. More the coupling value of combination of classes

means the classes are tightly interconnected to each other; therefore these are very

hard to test and maintain. The coupling value of each combination is used to prioritize

the combination and individual classes are prioritized on the bases of interaction

coupling. The prioritized order of the combination and individual classes are mapped

with the test cases that executed the corresponding combination and classes. Three

types of coupling exist in object oriented software [14]. These are interaction

coupling, component coupling and inheritance coupling. Each coupling type has been

assigned a positive weight (see in Table 3.23) which shows the worseness of the

particular coupling. The couplings [14] are further sub divided under each category as

shown in the Table 3.24.

Table 3.23: Value of Weight Assigned to Coupling Type

S. No. Coupling Name Assigned weight

1 Inheritance Coupling 3

2 Component Coupling 2

3 Interaction Coupling 1

89

Table 3.24: Weight Assigned to Dimensions of Coupling under Each Category

S.No. Dimension of

coupling

Degree of coupling Weight

1 Interaction coupling Content coupling .6

Common Coupling .5

External Coupling .4

Control coupling .3

Stamp Coupling .2

Data Coupling .1

2 Component coupling Hidden Coupling .3

Scattered Coupling .2

Specified Coupling .1

3 Inheritance Coupling Modification Coupling .3

Refinement Coupling .2

Extension coupling .1

3.5.1 Determination of Interaction Coupling Existed In Individual Classes

In object oriented programming system, methods are coupled by interaction in terms

of invocation of each other. By analysis of the individual classes the interaction

coupling is determined. The interaction coupling (Cintr) value of classes is

determined by using the Formula 3.8 and Table 3.25.

The degrees of interaction coupling are Content coupling, Common coupling,

External coupling, Control Coupling, Stamp Coupling, and Data Coupling. Each type

90

of coupling has been assigned a positive weight which shows the worseness of the

coupling types.

Cintr(C) = (.6*Cn+.5*Co+.4*Ex+.3*Con+.2*St+.1*Dt) ---------------------------(3.8)

Where Cn is the number of content coupling, Co is the value of common coupling, Ex

is value of external coupling, Con is the value of control coupling, St is value of

stamp coupling and Dt is value of data coupling.

3.5.2 Determination of Component and Inheritance Coupling Between the

Classes

In this level coupling between the possible combinations of the classes are

determined. The coupling of the combination is identified by analyzing the

component and inheritance coupling existed in the combination of the classes. The

value of combination is calculated by using the Formula 3.9 and Formula 3.10 as

shown below

Ccomp = (.3*HC + 2*SC +.1*SPC) --------------------------------------(3.9)

Cinhr = (.3*MC + .2*RC + .1*EC) -------------------------------------- (3.10)

Where Ccomp is calculated value of component coupling , HC is the hidden coupling,

SC is the Scattered coupling, SPC is Specified coupling, Cinhr is the calculated value

of inheritance coupling , MC is modified coupling, RC is refined coupling and EC is

extension coupling.

91

3.5.3 Prioritization of the Combinations of Classes and Individual Class

 In the third phase test cases are prioritized. For prioritizing the test cases the

combinations of the classes are prioritized by using the coupling value of

combinations of classes. The Coupling value of each combination (Vcomb) is

calculated by using the Formula 3.11 as given below

 Vcomb = 3*Cinhr + 2*Ccomp + 1*CIntr ----------------------------------- (3.11)

The individual classes are prioritized on the basis of the calculated value of

interaction coupling.

3.5.4 Mapping of All Possible Combination of Classes and Individual Classes

with the Test Cases

After prioritizing the combination of classes and the individual class a prioritized

ordered of the combination of classes and individual classes is obtained. Every

combination of class and individual class is covered by the one or more test case so

the ordered combinations of classes and individual class are mapped with the test

cases which are executed covering the classes.

3.5.5 Prioritization of the Test Cases

Test cases are prioritized on the basis of coupling value of combinations of classes.

Test cases of the highest prioritized combinations are executed first. It may be

possible that combinations have more than one test case. In such types of

92

circumstances the prioritization the test cases can be done using any of earlier test

case prioritization method [156, 157].

3.5.6 Algorithm.

An algorithm has been designed for the above process as shown in Figure 3.20.

Figure: 3.20: Algorithms for the Proposed Approach (CATCPTOOS)

Step 1. Let T be the set of unprioritized test cases and T‟ be the set of prioritized test cases.

Step 2 Let C be the set of classes that are used in the software

Step 3 Determine all the possible combination of classes that are used in software.

Step 4 Determine the interaction coupling of individual class using formula given below

 Cintr(C) = (.6*Cn +.5*Co+.4*Ex+.3*Con+.2*St+.1*Dt)

Step 5Determine the component coupling and inheritance coupling for all the possible combination of the classes

by using the following formulae

 Ccomp = (.3*HC + 2*SC +.1*SPC)

 Cinhr = (.3*MC + .2*RC + .1*EC)

Step 6 Determine the Coupling value of each combination and individual class by using the formula

Vcomb = 3*Cinhr + 2*Ccomp + 1* Cintr

Where is Cintr is determined by the formula 1, Ccomp is determined by formula 2 and Cinhr is calculated by the

formula 3

Step 7 Prioritize the combinations on the basis of determined value of VComb

Step8 Map the test cases with the prioritized combinations of classes and individual class.

Step 9 T‟ is the set of prioritized test cases

Step10 Execute the test cases in prioritized order.

93

3.5.7 Example: To explain the presented approach it was applied on an example as

shown below in Figure 3.21.

Figure 3.21: Consider Hierarchy of Classes

As above shown in the Figure 3.21 there are five class as which are interrelated to

each other

Let C = {A,B,C,D,E,F}

Now make all the possible combinations of the class shown in the Figure 3.21

Sup(C)= {A},{B},{C},{D},{E},{F},{A,B},{A,C},{A,D},{B,E},{D,F}{A,B,E}

{A,D,F}

At first level calculate the coupling of the individual class using the Table 3.24 and

Formula 3.8. The Table 3.25 shown below shows the interaction coupling value

existed in the class

Now the component coupling and inheritance coupling existed in all possible

combination are identified and remove all combinations which do not have the

component and content coupling. The Table 3.27 shows all the types of coupling

Vcomb value of the combinations of classes.

94

Table 3.25: Determined Value of Interaction Coupling in Individual Classes

S.No. Class

Name

Determined Interaction

coupling in classes

Calculated Cint value of

individual class

1 A Cn = 1, dt =3 (.6*1+.1*3) = .9

2 B Dt = 2 (.1*2)= .2

3 C Cn=1 ,st =4 dt =3 (.6*1 + .2*4 + .1*3)= 1.7

4 D Ex =1 (.4*1) = .4

5 E Dt =2 (.2 *1) = .2

6 F Dt =3 (.3 *1) = .3

Table 3.26: Determined Value of Component and Inheritance Coupling of All Combination of Classes

S.NO. Combinations Component Inheritance Ccomp value Cinhr

1 ABE HC = 1

EC = 2 (.3*1) = .3 (.1*2)= .2

2 ADF 0 MC =1

EC =2

0 (.3*1 +.1*2)=.5

3 AB SC=1 0 (.2 *1) = .2 0

4 AC HC =1 EC =1 (.3 *1) = .3 (.1*1) = .1

5 AD 0 EC =1 0 (.1*1) =.1

95

The Table 3.27 shows the determination the Vcomb value of combination of classes

and individual class

Table 3.27: Determined Value of VComb of Combination of Classes and Individual Classes

S.No Prioritized

order of sub

sets of classes

Value Calculation Vcomb

1 ABE 3*.2 + 2 *.3 + .9 +.2 + .2 2.5

2 ADF 3*.5 + .9 + .4 + .3 3.1

3 AB 2*.2 + .9 + .2 1.5

4 AD 3 *1 + .9+ .4 1.6

5 AC 3*1 + .2 * .3 + .9 + 1.7 3.5

6 A 1*.9 .9

7 B 1*.2 .2

8 C 1*1.7 1.7

9 D 1*.4 .4

10 E 1*.2 .2

11 F 1*.3 .3

Now using the above table prioritizing order of the combinations of the class and

individual class is {A,C} {A,D,F},{A,B,E},{C},{A,D},{A,B},{A},{D},{F},{E},

{B}

Now performing the mapping between the test cases and the combinations of classes

and individual class as shown below in the Table 3.28.

96

Table 3.28: Prioritized Combination of Classes, Individual Class and Covered Test Cases

S.No Prioritized order of sub sets of

classes

Sub sets covered by test cases

1 AC T7

2 ADF T11

3 ABE T,12, T13,

4 C T3

5 AD T10,T8

6 AB T9,

7 A T1,

8 D T4

9 F T6

10 B T2

11 E T5

The prioritized order of the test cases is T7, T11, T12, T13, T3, T10, T8, T9, T1, T4,

T6, T2, T5,

3.5.8 Result and Analysis.

To analyze the efficacy of the proposed approach, it was applied on a software [158]

dispensary management system. The software was implemented in C++ language.

The considered case study has drags, cost, save data, load data, change data and start

class. The finding of the result after applying the approach has been given below.

97

Table 3.29: Determined Interaction Coupling of Individual Class

S.No Class name Determined coupling dimension

1 Drags 0

2 Cost Cn =1

3 Saving data 0

4 Load data 0

5 Change data 0

Table 3.30: Determined Component and Inheritance Coupling Interaction Coupling of Individual Class

S.No combinations Cinhr Ccomp Cintr Mapped test case

1 Cost, Drags EC =1 HC =1 Cn =1 T5

2 Load data, Saving

data

EC = 1 HC = 1 0 T4

3 Saving data, Cost EC=1 HC =1 Cn=1 T3

4 Changedata, Saving

data, Cost

EC=3 HC=3 Cn =1 T2

5 Drags 0 0 0 T1

Table 3.31: Calculated Value of Vcomb

S.No Combinations Vcomb

1 Changedata, Saving data, Cost 2.1

2 Load data, Saving data .9

3 Saving data, Cost 1.5

4 Cost, Drags 1.5

5 Drags 0

98

The prioritized order of test cases is T2, T3, T5, T4, and T1.

The Table 3.32 shows the faults detected when the test cases are executed in the non

prioritized order

Table 3.32: Faults Detected by the Test Cases in Non Prioritized Order

 TC1 TC2 TC3 TC4 TC5

F1 * * * * *

F2 * * * *

F3 * * * *

F4 * * *

F5 *

F6 *

F7 *

F8 *

The Table 3.33 shows the faults detected when the test cases are executed in the

prioritized order.

Table 3.33: Faults Detected by the Test Cases in Prioritized Order

 TC2 TC3 TC5 TC4 TC1

F1 * * * * *

F2 * * * *

F3 * * * *

F4 * * *

F5 *

F6 *

F7 *

F8 *

The Figure 3.22 and 3.23 shows the APFD graph of faults detected by the test cases in

non prioritized order and prioritized order.

99

Figure 3.22: APFD Graph for Non Prioritized Approach

Figure 3.23: APFD Graph for Proposed Approach

The proposed approach is also applied on the software of advance payroll

management [159]. The considered software was implemented in Java and performs

various operations like addition of employee, edit, deletion, change settings, generate

slips. To check the validity of the proposed approach 16 faults are added in the

software and detected by executing the 18 test cases. The proposed approach was also

compared with the other existing approach [98]. The Figure 3.24 shows the

0

1

2

3

4

5

6

7

8

9

TC1 TC2 TC3 TC4 TC5

D
e

te
ct

e
d

 F
au

lt
s

Executed Test Cases

Non Prioritized
Approach (APFD =
47.5%)

0

1

2

3

4

5

6

7

8

9

TC2 TC3 TC5 TC4 TC1

D
e

te
ct

e
d

 F
au

lt
s

Executed Test Cases

Proposed Approach
(APFD = 67.5%)

100

comparison of APFD graph of execution of ordered test cases obtained by applying

the non prioritized approach, Ajay Kumar Jena[98] and proposed approach.

Figure 3.24: Comparison of APFD Graph for Non Prioritized, Proposed and Ajay k. Jena Approach

3.6 CONCLUSION

In this chapter four techniques are presented to prioritize the test cases of the software

implemented using the OOT. Every technique considers some factors which help to

detect the maximum faults as early stages as possible. First technique prioritizes the

test cases on the basis of the cost and code and considers some factors to determine

the cost. In the second technique OOCFG for the object oriented software is proposed,

which uses some factors representation and used their weight to prioritize the test

cases. The third technique prioritizes the test cases on the basis of the complexity of

the methods. Some factors are considered to calculate the method complexity. In the

fourth technique coupling existed in the object oriented software is used to prioritize

the test cases. For experimental verification and validation all the approaches have

been applied on the various software. The finding of the analysis shows the

effectiveness of the proposed approaches.

0

2

4

6

8

10

12

14

16

18

T1 T3 T5 T7 T9 T11 T13 T15 T17

D
e

te
ct

e
d

 F
au

lt
s

Test Cases Executed

Non Prioritized
Aprch(APFD = 48%)

Ajay K. Jena et al. Aprch
(APFD = 65%)

Proposed Aprch (APFD =
72%)

101

Chapter IV

SYSTEM TEST CASE PRIORITIZATION: PROPOSED

WORK

4.1 INTRODUCTION

In system testing the software is required to be tested in the real conditions which are

very challenging. So large numbers of test cases are generated and executed. It is very

expensive and time consuming process to execute all test cases. In this chapter, a

technique to prioritize the system test cases for object oriented software and a cost

reduction framework for the same is presented. The technique to prioritize the test

cases works at three levels. At first level requirements are prioritized using the seven

factors. At the second level the modules are prioritized using four factors. At the third

level the test cases of prioritized module are further prioritized using the six factors.

The presented cost reduction framework prioritizes the requirements which are going

to test in three categories. Further the categorized requirements are mapped with the

past testing history of the software tested by the industry. After this testing strategies

are decided which help to deliver the quality product within the lowest testing cost

and time. All these techniques are explained in subsequent sections.

4.2 A MULTILEVEL SYSTEM TEST CASES PRIORITIZATION

TECHNIQUE FOR OBJECT ORIENTED SOFTWARE (MSTCPTOOS)

The proposed approach works in three phases. In the first phase the requirements are

prioritized. The prioritizations of requirements, modules and test cases are performed

on the basis of the some factors. Every considered factor has been assigned a positive

weight which is determined by using the four algorithms in SPSS. In the second phase

the modules of the ordered requirement are prioritized. Finally in third phase the test

cases of the particular requirement are prioritized.

102

4.2.1 Determination of the Weight for Considered Factors:

For determination of the contribution weight to each factor, a set of data was collected

from various projects implemented by the students. The data collected from the

students are analyzed by the four algorithms using SPSS Modeler [160]. The SPSS

Modeler provides the strategic technique to determine the meaningful relationship

among the large set of data. The SPSS Modeler has the various modeling algorithms

for specific business expertise. These modeling algorithms are classification,

prediction, and segmentation and association analysis. With the help of SPSS Modeler

different relationships in data are investigated by applying different models. These

four algorithms are the CHAID, QUEST, C 5.0 and C&R Tree [161,170,171,172].

The outcomes of all algorithms are analyzed and the contributions of all the

considered factors are determined to decide the prediction of faults at requirement,

module and test case level. The average of determined importance value obtained

from all algorithms is used to prioritize the requirement, module and test cases. Figure

4.1 shows the process to find the contribution of factors to prioritize the requirements.

The following steps have to be taken to apply the SPSS modeler on the set of data.

 The collected data which is going to be analyzed is imported in the SPSS

modeler.

 Select the Target field from the data set, used to decide the contribution value

of factors.

 Select the fields form the data set whose contribution value will be

determined.

 Select the algorithm and apply it.

 Check the result and find the contribution value of the factors by analyzing the

decision tree or Bar chart.

The Screen shots of the determination weight of the factors to contribute to find

maximum faults are given in the Appendix E.

103

4.2.2 Factors Considered for Requirement Prioritization and their Reasoning

The prioritizations of the requirements are performed by using six factors. These

factors are determined by the analysis of the software requirement specification.

These factors are customer priority, fault proneness, requirement dependency, cost of

change and risk associated with requirements. Every factor has been assigned a value

between 0 to 10. The reason of using these factors are given below:

 Customer Priority (CP): The customer priority factor is used to determine

that how much requirement is important for the customer. The customer may

assign the value between the 0 to 10. The higher value shows the importance

of the requirement.

Figure 4.1 Process of Determination of the Factors Weight

Task Related Data

Select the target field and the

predictor fields from the Data

Select the Algorithm to be Applied

Apply the Algorithm on the

Selected Fields

Find out the Contribution Value of

the Factors

104

 Requirement Dependency Value (RDV): This factor shows that how many

requirements depend on a particular requirement. The value of this factor is

assigned by the developer. The value of requirement dependency is assigned

between the 0 and 10. This value is calculated by the following Formula 4.1

RDV = (Number of Dependent requirements / total requirements in the whole

 project) *10 ---(4.1)

The calculated RDV value of each requirement is used to assign the value in

range of 0 to 10

 Cost of Change: This factor shows the cost of change in the requirement.

The requirement may be already developed or partially developed. The

requirement is volatile is nature. The requirement may be changed at later

stage. So this factor shows the probability of the estimated cost if any change

is introduced in the requirement at later stage. The value of this factor is

assigned by the developer.

 Implementation Complexity: This factor shows that how much the

requirement is difficult to implement. There are various ways to determine the

complexity. More the complexity means more the difficulty to implement the

requirement. The Value of this factor is assigned by the developer.

 Business Impact by the Requirement: This factor shows how much the

business is affected by the requirement if it fails. There are many requirements

if they are failed they don‟t put impact on the business. The value of this factor

is assigned by the business analytics.

 Requirement Severity: This factor shows concern about the security of the

requirement. In a software there may be some requirement which performed

some financial data and very critical for the organization. These requirements

are to be protected from the transaction related to unauthorized user or other

theft attack.

105

 Availability of Resource: This factor shows that whether the required

resources to implement the requirement are available or not. The resources

may be software tool and technology, experience developers, time, allocated

budget for the particular requirement, etc.

4.2.3 Factors Considered for Prioritization of Module and their Reasoning

After prioritization of the requirements now the modules of the prioritized

requirements are further prioritized. Every requirement has one or more than one

modules. So these are to be prioritized. The modules are prioritized on the basis of the

four factors. The values of the factors are assigned by the developer, business

analytics and tester.

 Module Dependency: In module dependency two modules are connected in

such a way that one module cannot function without other modules. If a

module has high out degree of dependency then this module can impact all

dependent modules. The module dependency value (MDV) can be calculated

by the Formula 4.2.

MDV = (NDM/TM)*10 ------------------------------------(4.2)

Where NDM is number of dependent modules and TM is the total modules

presented in the requirement

 Complexity of Module: This factor shows how much module is complex to

implement. The complexity of module can be calculated by the various ways.

The value of module complexity is assigned between the 0 and 10. The value

1 shows the lowest module complexity and the value 10 shows the higher

module complexity.

 Impact on the Requirement: This factor shows the impact of particular

module failure on associated requirement. The value of factor impact on the

106

requirement is assigned between the 0 and 10. The value of this factor is

assigned by tester.

 Requirements Coverage by Module (RCM): This factor shows that how

many requirements used a particular module. It may be possible that many

requirements can use the same modules and all the requirements will not

function in case of module failure. This value can be calculated by the

Formula 4.3.

 RCM = (NRC/TR)*10 --(4.3)

Where NRC is the number of requirements covered by the test cases and TR is

the total numbers of the requirements in the whole software.

4.2.4 Factors Considered for Prioritization of Test Cases and their Reasoning

Every requirement has large number of test cases. It is very costly and time

consuming process to execute the unordered test cases. Test case prioritization for

prioritized requirements is performed on the basis of some factors. Every factor has

been assigned a value between 0 to 10. The Values of factors are assigned by tester

and business analytics. The reason of using these factors is given below:

 Test Case Effectiveness: This factor shows how much this test case is

effective in past execution of the test case. The value of this factor is assigned

by tester

 Execution Frequency: This factor shows that how frequently test cases are

executed by the user. There may be some feature which was required by the

user but never run by the user. So in case if they are failed, don‟t put any

effect on the business.

 Test Dependency: This factor shows the dependency of the other test cases

on a particular test case. During testing some test case are never executed if

some prior test cases are not executed.

107

 Business Impact by Test Cases: This factor shows the criticality of the test

case for the business and shows the estimation of the business loss if the

particular test case failed.

 Feature Covered by the Test Case (FCT): Every requirement has various

features and this factor shows that how many features are covered by the test

case. The value of FCT can be calculated by the Formula 4.4

FCT = (FC/TFM)*10---(4.4)

Where FC is the number of features covered by the test cases and TFM is total

feature in associated module.

 Fault Detection: This factor shows the capability of detecting the maximum

faults by the test case.

4.2.5 The Predicted Important Value of all the factors

Table 4.1 shows the prediction important value of each factors of the requirement

from all algorithms

Table 4.1: Predicted Weight of the Factors Associated With Requirement

 CHAID QUEST C.50 C&R Total Mean

Average of the

Predicted Values

Implementation

Complexity

0.04 0.01 0.2 0.12 0.37 0.0925

Cost of Change 0.07 0.09 0.15 0.04 0.35 0.0875

Business Impact 0.09 0.07 0.15 0.04 0.35 0.0875

Requirement

Severity

0.12 0.09 0.07 0.01 0.29 0.0725

Requirement

Dependency

0.14 0.23 0.02 0.17 0.56 0.14

Availability of

Resources

0.16 0.09 0.25 0.19 0.69 0.1725

Customer Priority 0.39 0.42 0.16 0.43 1.4 0.35

108

Table 4.2 shows the predicted important values of each factor of the module from all

algorithms

 Table 4.2: Predicted Weight of the Factors Associated With Modules

 CHAID QUEST C 5.0 C&R Total Mean

Average of

the

Predicted

Values

Impact on

Requirement

0.1 0.01 0.23 0.09 0.43 0.1075

Requirement

Coverage

0.13 0.32 0.29 0.28 1.02 0.255

Complexity of

Module

0.17 0.24 0.18 0.23 0.82 0.205

Module

Dependency

0.59 0.42 0.31 0.4 1.72 0.43

Table 4.3 shows the predicted important values of each factor of the test cases from

all algorithms

Table 4.3 Predicted Weights of the Factors Associated With Test Cases

 CHAID QUEST C& R C 5.0 Total Mean

Average of the

Predicted

Values

Execution

Frequency

0.09 0.2 0.07 0.19 0.55 0.1375

Feature Covered

by Test Case

0.11 0.62 0.19 0.27 1.19 0.2975

Test Case

Effectiveness

0.16 0.1 0.21 0.16 0.63 0.1575

Test Dependency 0.18 0.03 0.3 0.16 0.67 0.1675

Business Impact

by Test Case

0.45 0.03 0.22 0.22 0.92 0.23

Fault Detection 0.01 0.03 0.02 0.01 0.07 0.0175

109

4.2.6 Proposed Process of Test Case Prioritization

Prioritization of the Requirement: The requirements are prioritized using the seven

factors which are shown in Table 4.4. Every factor has been assigned a positive

weight which shows the contribution to predict the occurrence of faults in

requirements. The weight is determined by applying various data mining algorithm in

SPSS modeler. The requirements are prioritized using the calculated value of

requirement prioritization value (RPV) which is calculated by the Formula 4.5.

Table 4.4: Proposed Factors and Weight to Prioritize the Requirements

Proposed Factors Predicted Weight

Implementation Complexity 0.0925

Cost of Change 0.0875

Business Impact 0.0875

Requirement Severity 0.0725

Requirement Dependency Value 0.14

Availability of Resources 0.1725

Customer priority 0.35

 n

 RPV = ∑Wi * Vi--(4.5)

 i=1

 where Wi is the weight of the ith factors and Vi is the value of assigned to the ith

factors of requirement.

Prioritization of the Module: Modules are prioritized on the basis of the four

factors. These factors are Impact on Requirement, Requirement Coverage,

Complexity of Module and Module Dependency. Every factor has been assigned a

positive weight which is calculated by applying the four algorithms as shown in Table

110

4.5. For prioritization of the modules the value of module prioritization value (MPV)

is calculated by using the Formula 4.6.

 Table 4.5: Proposed Factors to Prioritize the Modules

Proposed Factors Predicted Weight

Impact on Requirement 0.1075

Requirement Coverage by module 0.255

Complexity of Module 0.205

Module Dependency 0.43

 n

 MPV = ∑WMFi * VMFi--(4.6)

 i=1

Where WMF is the assigned weight to the ith factors and VMF is estimated value of

the ith factor of module.

Prioritization of the Test Cases: In this phase the test cases of the prioritized module

are prioritized. Prioritization of the test cases is performed on the basis of the six

factors. These factors are the Execution Frequency, Feature covered by test case, Test

Case efficiency, Test Dependency, Business Impact by test case and Fault Detection.

Every factor has assigned a positive weight which shows the capability of detection of

the faults by the test cases. The weight assigned to the factors is shown in the Table

4.6. The test cases are ordered on the basis of the calculated value of the test case

prioritization value (TCPV). This is calculated by the Formula 4.7.

111

 Table 4.6: Proposed Factors to Prioritize the Test Cases

Proposed Factors Predicted Weight

Execution Frequency 0.1375

Feature covered by test case 0.2975

Test Case Effectiveness 0.1575

Test Dependency 0.1675

Business Impact by test case 0.23

Fault Detection 0.0175

 n

 TCPV = ∑WTFi * VTFi----------------------------------(4.7)

 i=1

Where WTF is the assigned weight to the ith factors and VTF is estimated value of

the ith factor of test case.

4.2.7 Result and Analysis

For experimental verification and validation the proposed approach has been applied

on two software of Inventory management implemented [155] in Java and Library

information system [162] implemented in C++. The considered first software has

performed various operations like addition of customer, update the customer data,

add, remove, delete and update the product etc.

To analyze the effectiveness of the proposed approach some faults are introduced in

the software, which are detected by applying the proposed approach. The outcomes of

the proposed approach have been shown below.

112

The Table 4.7 shows the prioritization of the requirement

Table 4.7: Prioritization of Requirements.

 Customer Product Supplier Warehouse Sales

Person

Invoice Help logoff exit Assigned

weight

Customer

Priority (CP).

8 8 5 7 5 8 3 5 3 0.35

Requirement

dependency

8.8 8.8 5.5 5.5 5.5 3.3 0 0 0 0.14

Cost of

change

8 7 5 5 5 5 0 5 0 0.0875

Implementati

on Complexity

8 8 5 7 5 5 0 5 0 0.0925

Business

Impact by the

Requirement

9 9 5 8 5 9 0 0 0 0.0875

Requirement

Severity

9 9 5 7 5 5 0 0 0 0.0725

Availability of

Resource

5 5 5 7 5 3 0 0 0 0.1725

RPV 7.7745 7.687 5.0825 6.72 5.0825 5.8295 1.05 3.0875 1.75

The highest prioritized requirements has four modules, these modules are the

add_edit_customer, search customer, print, and delete the customer. The prioritization

process of the modules using contribution weight is shown in Table 4.8.

 Table 4.8: Prioritization of Modules of Highest Prioritized Requirement

 Add_Edit_Customer

Search

Delete

Print

Impact on

Requirement

9 7 5 2

Requirement

Coverage

1.11 1.11 1.11 1.11

Complexity of Module 9 5 5 4

Module Dependency 7.5 5 0.25 0.25

MPCV 6.3205 4.2105 1.9530 1.4255

113

The prioritized order of the modules is Add_Edit_Customer, Search customer, Delete

customer and print.

Now the test cases of the highest prioritized modules are prioritized. Table 4.9 shows

the prioritization of the test cases of the add_edit_customer module.

The Table 4.9 shows the calculated value of the TCPV

Table 4.9: Prioritization of Test Cases of the Highest Prioritized Module

 TC1 TC2 TC3 TC4 TC5 TC6 Assigned

Weight

Test Case

Effectiveness

0 0 0 0 0 0 0.1575

Execution

Frequency

9 9 3 9 3 1 0.1375

Test Dependency 8 8 3 9 2 1 0.1675

Business Impact

by Test Cases

9 9 0 9 0 1 0.23

Feature Covered

by the Test Case

5 5 5 5 5 5 0.2975

Faults Detection 6 7 3 9 3 1 0.0175

TCPV 6.24 6.25 2.4 6.46 2.32 2.04

On the basis of the obtained value of the TCPV the execution order of the test cases of

the Add _Edit _Customer module is TC4, TC2, TC1, TC3, TC5, and TC6

114

The Graph in Figure 4.2 shows the APFD Graph of the Proposed approach, Non

Prioritized approach and the PORT 2.0 Approach [136]

Figure 4.2: APFD Graph of non prioritized, Port and Proposed approach

APFD Value of the Non prioritized, PORT 2.0 and the Proposed approach is as shown

in the Table 4.10.

Table 4.10: APFD Values of the Non Prioritized, Port and Proposed Approach

S.No Name of Approach APFD Value (%)

1 Non Prioritized Approach 50%

2 PORT 2.0 Approach 51%

3 Proposed Approach 56%

The same approach was applied on second considered software library information

system implemented in the C++ programming language. The considered software

perform the various functions like acquisition of books, membership maintenance,

book issue, book return, renewal of membership, answer management queries. For

experimental verification 98 faults has been introduced in the considered software

0

10

20

30

40

50

60

70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Fa
u

lt
s

D
e

te
ct

e
d

Executed Test Cases

PORT APRCH (APFD = 51%)

Proposed APRCH (APFD = 56%)

Non Prioritized Aprch (APFD =
50%)

115

which are detected using 111 test cases. The experimented results are shown in Figure

4.3.

Figure 4.3: APFD Graph of Non prioritized, PORT 2.0 and Proposed approach

APFD Value of the Non prioritized, PORT 2.0 and the Proposed approach is as shown

in the Table 4.11.

 Table 4.11: APFD Values of the Non Prioritized, PORT 2.0 and Proposed Approach

S.No Name of Approach APFD Value (%)

1 Non Prioritized approach 49%

2 PORT 2.0 approach 50%

3 Proposed approach 55%

0

20

40

60

80

100

120

TC
1

TC
7

TC
1

3

TC
1

9

TC
2

5

TC
3

1

TC
3

7

TC
4

3

TC
4

9

TC
5

5

TC
6

1

TC
6

7

TC
7

3

TC
7

9

TC
8

5

TC
9

1

TC
9

7

TC
1

0
3

TC
1

0
9

D
e

te
ct

e
d

 F
au

lt
s

Executed Test Cases

Non Prioritized

PORT

Proposed

116

4.3 COST REDUCTION FRAMEWORK FOR OBJECT ORIENTED SYSTEM

(CORFOOS)

Due to complexity of software needed to satisfy different requirements of the user,

testing of software has also become quite complex. Effective software testing

consumes more resources including time and increases the overall cost of software

development. Various researchers have presented many techniques for reduction of

testing- cost. The studies show that if the faults are not fixed in their early phase,

more cost is incurred to fix the faults in the later phases. Software maintenance phase

is an expensive phase as it incurs an approximate 60% of the total cost of software

development.

The researchers showed that regression testing takes almost 80% of the budget

allocated for testing and up to 50% of the budget for software maintenance [163]. The

various constraints in software development that need to be factored in for controlling

costs are budget, time, quality, risk etc.

According to finding of sixth world quality report, average spending on QA as a

percentage of the total IT budget has risen from 18% in 2012 and 23% in 2013 to

26% in 2014 [164]. The share of testing budget is expected to reach 29% by 2017.

Due to increase of testing cost in software development, there is a need for a

technique or a framework for reduction of testing cost. With that objective, a cost

reduction framework for object oriented software is presented.

4.3.1 The Proposed Framework

The proposed framework works at four levels. At the first level, requirements are

analyzed and a requirement dependency graph is plotted. By using the requirement

dependency graph a requirement dependency metric will be created that shows

dependency value of requirements. There may be some requirements which are

already implemented by the organization. At the second level, all the requirements are

mapped with the past implemented requirements. After mapping, requirements will

117

be divided into three categories: partial modified requirements, unmodified

requirements and new requirements.

By using requirement dependency metric, dependency of unmodified requirement is

determined. If the dependency of unmodified requirements is zero, there is no need to

test them. But if the dependency value of requirement is non zero, then suitable

testing strategy is required to test the requirements. The test cases are selected from

the previously tested cases. In the case of partial modified requirements, an

appropriate regression technique is applied to identify the affected part of

requirements and for testing of requirements as a whole.

For the new requirements three models are used: Dependency model, Interaction

model and Language specification model. After analysis of these models, complexity

of new requirements and the faulty model of requirement are determined. By using

the identified complexities and faulty model, the requirements are prioritized and

suitable testing strategy is selected as shown in Figure 4.4.

4.3.2 Requirement Analysis and Requirement Dependency Graph

In this phase, an analysis of requirements is performed first of all. The analysis of

requirements is performed for identifying the purpose of developing the software.

After analyzing the requirements, an intermediate graph for determining the

dependencies between the requirements is constructed.

In the intermediate requirement dependency graph (IRDG), the requirements are

denoted by the node and dependencies between the requirements are shown by the

directional edges. After constructing the IRDG, degree of each node is counted. The

degree of each node is the sum of in - degree and out - degree of a node. This degree

of requirements is termed as intermediate requirement dependency value (IRDV). In

this way, the intermediate requirement dependency value (IRDV) metric forms using

IRDG.

118

4.3.3 Partition of Requirements by Mapping them with Past Implemented

Requirements

In this phase, the requirements are mapped with past implemented requirements.

Mapping is based on functionality and implementation platform of a requirement.

After mapping, the requirements are categorized as new, partially modified or

unmodified.

 New Requirements are the emerging requirements which have not been

implemented by the organization.

 Partially Modified Requirements are those requirements which were

implemented earlier by the organization, but now there is a scope for quite a

few changes.

 Unmodified Requirements are those requirements that are implemented

without any changes.

119

Figure 4.4: Framework for Cost Reduction

Requirement dependency

graph

Requirement Analysis

Mapping with the past

implemented

requirements

Partial modified

requirements

Unmodified

Requirements (Un)

New Requirement

 Is

Dep(Un)=0

Testing not required

Dependency

model

Apply regression

technique

Select required test cases

from previous test pool

Interaction

 model

Language

specification

model

Fault model

Complexity of

requiremnts

Requirement

Prioritization and

Testing strategy

N

Y

120

Let R be a set of requirements, such that

R = {R1, R2, R3, R4, R5, R6, R7, R8, R9}

Set Pr is a set of partial modified requirements, Ur is set of unmodified requirements and

Nr is the set of new requirements, such that

Pr= {R1, R4, R5}, Ur = {R5, R8, R9}, Nr = {R2, R3, R6}

 U

Figure 4.5: Partition of the Requirements

4.3.4 Identification of Critical Requirements

By using the IRDV, any dependency of unmodified requirement is identified. If no

dependency of unmodified requirement is found, then there is no need to test them. But if

dependency is found, then these requirements are put in a pool of requirements to be

tested and mapped with the fault model of past implemented requirements.

4.3.5 Complexity of Requirement

To find out the complexity of requirements, three models namely Dependency model,

Interaction model and Language Specification model are used to calculate the testing

parameters of requirements. Higher the scale of testing parameters, more are the chances

of errors to occur. By using these models, the developer can identify the types of errors

that might occur. Testers are able to design test cases and developer can code the

New Requirement (Nr)

Unmodified Requirements (Ur) Partial modified Requirements (Pr)

121

requirements on the basis of these test cases as well as expected faults. This type of

coding helps the developer to avoid these faults from occurring.

Dependency Model: It helps to [165,166] detect the structural dependency. Software

architects always specify a set of structural constraints for the target system. Source code

and related information like classes, sequence diagram and high level modules such as

package and component diagram must be analyzed by the architects. Analysis of

dependency includes the control dependency of the program, data dependency and

dependency between the classes, method to class, method to method, polymorphism

interdependency, implementation dependency, contractual dependency, dependency of

program on external system call, functional dependency, etc. The control dependency

covers exception handling, multithreading and synchronization. The data dependency

model helps to identify the cohesion of each class and coupling between the classes

which helps to determine the complexity of the requirement.

 Interaction Model: Interaction model [166, 167] is used to identify the different types

of interactions presented in the program. As object oriented language provides various

features such as inheritance, polymorphism, message passing, and encapsulation, it is

complicated and prone to errors. By using the interaction model, different types of

interactions between the programs are identified. The interaction model describes the

communication between the classes. The classes communicate to each other by passing

messages. These messages represent the interaction between the objects. There are

various types of messages in object oriented language as shown in Table 4.12.

Table 4.12: Types of Messages and Interaction in Object Oriented Programming Language.

Message Interaction

Simple Message Interaction between the classes

Synchronous Message Interaction between the classes and interface

Asynchronous Message Interaction between the different objects of the program

Reflexive message Interaction between the program and native method

Return message Interaction between the classes and distributed class

122

Language Specification Model: Language specification model [166,168] explains the

model of the language used for implementing the requirements. It helps to identify the

specified feature of language that is going to be used. Every language has a set of rules to

use the various features of the language. If the specified rules for use of feature are not

followed, then it will become a source of error. Using this model it helps the designer to

find out which features should be used to implement the requirements for getting a

quality product. The language specification model also shows which feature is prone to

error and the steps to follow for using the feature in an efficient and error free manner.

Fault Model: The Fault model [166] is used to determine types of faults which are

usually found during testing. The fault model shows the types of fault and reason of the

faults in the software. By using the fault model, the developer or tester can analyze the

software and take the required steps for reducing the faults.

Using the above mentioned models it helps to identify the testing effort of each

requirement as complexity of the requirements is calculated based on them. More the

complexity of the requirement more is the effort required for testing; which increases the

cost of testing too. Testing effort of a requirement can be calculated by incorporating the

following factors:

1. Number of classes

2. Level of inheritance

3. Number of attributes used in each class

4. Number of methods used

5. Number of native methods used

6. External system call

7. Import of the packages and API

8. Number of wrapper classes used

9. Multiple inheritance used

10. Method overloading and method overriding

11. Nested Classes

123

12. Expected Fault

13. Other factors

Testing effort (TE) can be calculated by the following Formula 4.8.

 n

Testing effort (TE) = ∑(fvaluei* fweighti) --------------------------------------(4.8)

 i=1

where fvalue is the value assigned to the considered factors and fweight is the weight

assigned to the factors, and the weight is assigned based on the criticality of the factor.

Factor criticality indicates the probability of error that different factors contribute. More

the factor weight more is the chances of errors to be introduced by the factors.

The requirements are prioritized and tested based on the calculated testing efforts. The

value of testing efforts shows the complexity of the requirement.

4.3.6 Result and Analysis

Due to constraints of resources, the proposed approach is validated by applying it on the

given requirements of a project. The requirements dependency graph is shown in Figure

4.6.

As shown in Figure 4.6, there are 10 requirements. The requirements R2 and R6 are the

independent requirements. The requirements and their dependency value are shown in

Table 4.13.

124

Figure 4.6: Intermediate Requirement Dependency Graph.

Table 4.13: Intermediate Requirements Dependency Value (IRDV).

S. No. Requirements IRDV

1 R1 7

2 R2 0

3 R3 3

4 R4 0

5 R5 2

6 R6 1

7 R7 1

8 R8 0

9 R9 0

10 R10 0

For validation of the proposed requirements, partitions of the requirements are shown

below:

R1

R3

R7

R10

R5

R8

R4

R2

R6 R9

125

Un = {R2, R4}, Nr ={ R1, R3, R4, R5, R8 } Pr = {R6, R9, R10}

Since the requirement set Nr is the set of new requirements that are implemented for the

first time by the organization, these should be analyzed by applying three models:

interaction model, dependency model and language specification model and be

prioritized accordingly.

Suppose X be the total cost to test each requirement and Y be the cost incurred in

regression testing of the software. Before applying the CORFOOS, total cost to test all

the requirements will be 10 X.

After applying the proposed framework, the findings are:

1. The requirements R2 and R4 are the independent requirements so the testing cost of

these requirements will be zero. So there is no need to test them.

2. The requirements R6, R9, R10 are partial modified, so cost incurred to test the partial

modified requirements will be 3Y.

3. The Requirements R1,R3,R4,R5,R8 are new requirements and so, their testing cost

will be 5X

So, after applying CORFOOS, total cost to test all requirements of the projects are 5X +

3Y where Y < X

If we do not apply the framework proposed above, then total cost to test all the

requirements will be 10 X, which is greater than the cost estimated by applying the

proposed approach, which are 5X + 3Y.

126

4.4 CONCLUSION

In this Chapter, a Multi-level system test case prioritization technique and cost reduction

framework for the object oriented software has been presented.

The presented system test case prioritization technique detects the maximum faults by

utilizing the less time. It will improve the quality and reduced the testing cost of the

developed software. In cost reduction framework Dependency, Interaction and Fault

model is used to reduce the testing cost of the software. The presented approach has

been applied on software for its validity. The experimented result shows that the

presented techniques and framework are very effective and helps to reduce the cost to

test the software.

127

Chapter V

REGRESSION TEST CASE PRIORITIZATION:

PROPOSED WORK

5.1 INTRODUCTION

This chapter focuses on the regression testing of object oriented systems. Regression

testing is done when the system is modified to accommodate the changes. For the

regression testing of the object oriented software three techniques have been presented in

this chapter. In first technique Object Oriented Program Dependency Graph (OPDG) and

Dynamic Slice is used to select test cases to execute the affected paths by incorporating

the changes in the software. The second technique prioritizes the regression test cases on

the basis of fault severity of the bugs. The third technique prioritizes the test cases using

the past history of testing. The details of three techniques are given in the subsequent

sections

5.2 REGRESSION TEST SELECTION FOR OBJECT ORIENTED SYSTEMS

USING OPDG AND SLICING TECHNIQUE

This work is concerned about class level changes in the object oriented system and

designing of algorithms to do the regression testing of system.

The regression testing in object oriented (OO) systems proceeds at two levels:

128

1. Application program testing

2. Interclass testing

In application program testing when the application program is modified. Regression

testing is performed when application program uses modified classes.

When a Class is modified, the aim is select test cases in the class‟s test suite that should

be re-executed. Similarly when a new class is derived from an existing class, test cases

from a test suite of base class should be identified for re-execution.

The following changes are considered to do the regression testing of object oriented

systems:

1. Addition of a Class

2. Deletion of a Class

3. Modification of a Class

 Addition of a method

 Deletion of a method

 Modification of a method

129

So whenever changes occur in the OO system, either modification of an existing class

will take place, or addition of a class takes place (can be a derived class or new class) in

system or deletion of a class takes place. In all these cases retesting of all the classes are

required which are affected by relationships like inheritance, composition and

association. This will produce a large test suite. Therefore, a technique is required that

will reduce the test case so that only affected classes are tested. In this direction a

technique has been proposed in this chapter. An overview of proposed technique is

shown in Figure 5.1.

Figure 5.1 Overview of Proposed Technique

In this technique an OPDG is constructed for the modified program. In case of addition of

class to the OO system, affected paths by adding the new class are identified in the

OPDG and marked. Then the test cases which execute the affected path are selected for

regression testing. When the class is modified, then the affected functions and affected

paths are identified. Then the dynamic slicing is applied to select those test cases whose

output has been affected due to modification. In case of deletion of class different cases

are there, a Class Hierarchy Subgraph (CHS) is constructed to identify the class by

deleting which the system will be invalid. Object oriented program dependency graph

Source Code of

Program

OPDG

Test Case

Selection

Algorithm

Original

Test Suite T

Reduced

Test Suite T‟

130

will be used to represent the object oriented programs whose regression testing is to be

done. This representation is modular allowing various analysis techniques to only use the

portion required for that analysis. Although this representation has three layers but in this

approach only two layers CHS and CDS of OPDG will be used. CHS will be used to

represent the inheritance hierarchy of classes and CDS is used to represent the control

structures of various functions of classes.

5.2.1 Addition of Class

A software system always copes with requirement changes. Either a new requirement

comes or an existing requirement changes. To accommodate the new requirements new

classes may be added in the system. The added class may be linked to the existing classes

in the system or may be an independent class in the system. If it is an independent class

then there is no need of interclass testing. However if it is linked to the existing classes

then interclass regression testing will play an important role.

A class may be a derived class to an existing class, or it may contain objects of other

classes as its attributes i.e. a composition relationship or it may be linked by an

association relationship.

The idea behind test case selection is that a new class‟s methods might be calling the

methods of old classes. When interclass regression testing is performed there is no need

to test all the functions of old classes. Only the functions that are used by new class will

be tested. The algorithm for selecting the test cases to test the affected classes is given in

Figure 5.2.

131

Figure 5.2 : Algorithm for Selecting The Test Cases To Test The Affected Classes

5.2.2 Modification of Class

Sometimes modifications in classes have to be done to incorporate changes. These

modifications in classes can be done in a variety of ways like Addition of a function in

class, Modification of a function in class, Deletion of a function in class.

 Addition of a Function in Class

If added function will be used by other functions in the class, then all those

functions need to be tested again. Also if that function modifies the value of a

variable, then dynamic slicing technique is used. All those test cases will be

selected for re-execution whose outputs have been affected by the use of that

variable. The algorithm for selecting the test cases for addition a function in a

class the is given in Figure 5.3.

INPUT: Source code of program;

Original test suite T;

OUTPUT: Reduced test suite T‟;

Algorithm for test case selection is:

1. Make the OPDG graph of the given classes from the source code of program.

2. After the addition of new class make the interlinked OPDG graph.

3. Mark those edges in the OPDG graph where there is a function calling dependency

between two classes.

4. Select only those test cases from the test suite T for inclusion in T‟ for regression testing

which execute the marked edges.

132

 Modification of a Function in Class

This problem is called Fragile base class problem [173]. Changing the super class

can affect the subclass. Modification of super class can make the subclass invalid.

However functions in the subclasses and other classes can be modified but not in

the super class. The algorithm for selecting the test cases for modification of a

function in a class is given Figure 5.4.

Figure 5.3: Algorithm for Selecting the Test Cases for Addition of a Function in Class

 Deletion of a Function in Class

When a function is deleted then all function calls to that function will be invalid.

All those functions which have used that function will be traced and stubs have to

be provided for those functions calls.

INPUT: Source code of the program;

 Original test suite T;

OUTPUT: Reduced test suite T‟;

1. From the source code of program make the OPDG of involved classes.

2. Mark the new added function.

3. If new added function modifies the definition of some variable, then trace all those

statements in the program where a use of that variable has been made.

4. Mark all the affected function in the OPDG.

5. Then the dynamic slice of that variable will be computed i.e all those functions will be

marked whose output may be influenced due to modification.

6. Else if it doesn‟t modify the value of any variable then trace those functions where that

function is used (as a call to that function), then the function calling edges will be marked

from that function.

7. Select those test cases which execute the marked edges and marked functions obtaining for

final test suite T‟

133

5.2.3 Deletion of a Class

There are various cases of deletion of class:

 Deletion of base class

When the base class is deleted then all its subclasses will be invalid. In the Figure

5.5 Student is the base class or super class, Test class is derived from the Student

class and, from the Test class and Sport class, Result class is derived. When the

super class Student is deleted, test class and Result class will be invalid. However

Sport class continues to work, because it has no relation to the Student class. Thus

it can be concluded that

Figure 5.4: Algorithm for Selecting the Test Cases for Modification of a Function in Class

INPUT: Source code of the program;

 Original test suite T;

OUTPUT: Selected test suite T‟;

Algorithm for test case selection is:

1. From the source code of program make the OPDG of involved classes.

2. Mark the statement in the OPDG which has been modified.

3. Also mark the function in the OPDG which has been modified.

4. Mark all the affected functions due to that modification in the OPDG.

5. If that function is used in other functions, then mark those function calling edges in the

 OPDG.

6. Compute the dynamic slice of the changed variable in the modified statement i.e mark

 those functions whose output have been influenced due to modification.

7. Select those test cases for regression testing which executes those marked edges and

 marked functions obtaining for final test suite T‟.

134

 A base class can‟t be deleted because then all its subclasses will become invalid.

 If the requirement of base class finishes then base class should be changed to

abstract class.

 By changing that class into abstract class its subclasses will remain valid but

application program can‟t instantiate that class

 Deletion of Derived Class

When the derived class is deleted, then the base class will not have any effect.

However if a derived class is used by another class and derived class is deleted,

then that class will be invalid.

In the Figure 5.5 when the class Result is deleted, links to put_number and put_marks

will be deleted and it will have no effect on its super class Student and Test.

However when the class Test is deleted, class Result will be invalid. When class Sport is

deleted a dummy function call for the function put_score has to be provided. Thus it can

be concluded that

 If the requirement of derived class finishes then a derived class can be deleted and

its super class will not have any effect of its deletion.

 However if that class is used by other classes then those classes will become

invalid.

135

Figure 5.5: Deletion of a Class

 5.2.4 Effectiveness of Proposed Approach

To analyze the effectiveness of proposed approach it is applied to various case studies.

Different programming examples of C++ are considered for each case i.e for addition of

class, modification of class, deletion of class. Then the OPDG for each case study is

Student

Get_number Put_number

Test

Put_score

Put_marks Get_marks

Sport

Result

Get_score

Display

136

constructed, subsequent test cases are designed and then the proposed approach is

applied. Finally on the basis of affected paths test cases are selected.

Addition of Class

To demonstrate the selection of test cases through the proposed approach, it is applied to

an C++ programming case study. The considered case study performs simple banking

operations like depositing the amount, withdrawing the amount, computing the interest

on deposited amount and displaying the balance. In this case study it is shown the

addition of class through inheritance. A base class Account is there then a class SAccount

(SavingsAccount) is derived. The class SAccount uses the functions of Account class. The

code of program is given below.

Source Code of the Considered Case study

class Account

{

protected:

char name [20];

int ano;

char type;

double acc_balance;

public:

account() {};

void credit(double);

void debit(double);

double getbalance();

137

};

Account :: Account (double initialdeposit, char *aname, int no, char atype)

{

c1p1 if(initialdeposit < 0.0)

s1 cout<<” Invalid entry”;

s2 sacc_balance = 0;

else

s3 acc_balance = initialdeposit;

s4 strcpy (name, aname);

s5 ano = no;

s6 type = atype;

}

void Account :: credit (double deposit)

{

s7 acc_balance += deposit;

s8 cout<<” Credited to account”;

}

bool Account :: debit (double withdraw)

{

c2p2 if(withdraw > acc_balance)

{

s9 cout<<” Invalid entry”;

s10 return false;

}

else

{

s11 acct_balance -= withdraw;

s12 cout<< “Debited to account”;

s13 return true;

}

}

138

double Account :: getbalance ()

{

s14 cout<<” Current account balance is:”<< acc_balance;

s15 return acc_balance;

}

class SAccount :: public Account

{

private:

double savingBalance;

double earnedInterest;

double annual_interestrate;

public:

SAccount(double);

~SAccount();

void calcInterest();

void modinterest(double);

void print();

};

SAccount :: SAccount(double savDeposit) : Account(savDeposit)

{

C3P3 if(savDeposit >=0)

{

S16 savingBalance = savDeposit;

}

else

{

S17 savingBalance = 0;

S18 cout<<” Invalid entry”;

}

}

SAccount :: ~SAccount()

139

{

}

void SAccount :: modInterest(double newrate)

{

 S19annual_interestrate = newrate;

}

void SAccount :: calcInterest()

{

S20 earnedInterest = (Account :: acc_balance * annual_interestrate);

S21 credit(earnedInteresr);

}

void SAccount :: print()

{

S22 cout<<”Balance is: “<< Account :: getbalance();

}

int main()

{

while(1)

{

char c;

char acname[30];

int acno;

char atype;

cout<<”\n Account opening system:”;

cout<<”\n Enter the customer name”;

for(int i=0; (i=getche())! = „\0‟; i++)

acname[i] = c;

acname[i] = „\0‟;

cout<<”\n Enter the account number”;

cin>>acno;

140

int ch;

while(1)

{

cout<<”\n Enter the account type: „s‟ for savings and „c‟ for checking”;

cin>>atype;

if(atype == „s‟)

{

SAccount s1(100) :: account(acname, acno, atype);

 while (1)

{

cout<<”\n Saving Account menu”;

cout<<”\n 1. Deposit”;

cout<<”\n 2. Withdraw”;

cout<<”\n 3. Compute interest”;

cout<<”\n 4. Display balance”;

cout<<”\n 5. Exit”;

cout<<”\n Enter your choice”;

cin>>ch;

if(ch == 1)

s1.credit(2500);

if(ch == 2)

s1.debit(500);

if(ch == 3)

s1.modifyinterest();

s1.calculateinterest();

if(ch == 4)

s1.print();

}

else

{

cout<<”\n Invalid choice”;

141

}

continue;

}

}

Construction of OPDG : An OPDG graph of considered case study is constructed to

identify the affected paths for interclass testing. The edges containing the affected paths

in the OPDG graph are colored red for distinguishing those edges from other edges. The

OPDG graph of this example is shown in the Figure 5.6.

Designing of Test Cases

On adding the class SAccount through inheritance to the base class Account, interclasss

testing is to be performed such that total test cases are run to test both classes on adding

the class as shown in the Table 5.1.

Table 5.1: Test Cases Designed for Addition of Class

Inputs Customer Name Atype Ch

TestCase 1 Ram S 1

TestCase 2 Ram S 2

TestCase 3 Ram S 3

TestCase 4 Ram S 4

TestCase 5 Ram S 5

142

But if test cases are to be selected for interclass testing, while considering the affected

path in the OPDG, only test case 3 and test case 4 execute the affected path. Test cases

selected for execution are shown in the Table 5.2

Table 5.2 Test Cases Selected for Addition of Class

Inputs CustomerName Atype Ch

TestCase 3 Ram S 3

TestCase 4 Ram S 4

So while performing the interclass testing on adding the class SAccount, only test case 3

and test case 4 need to be selected for re- execution instead of re-executing all test cases.

Modification of Class

Modification of a class can be done in three ways:

1. Adding a new function in the class

2. Modifying the existing function

3. Deleting the function in class.

All three cases are considered with a programming example.

143

Figure 5.6: OPDG for Addition of Class

Account

Account() Credit() Debit() Get_Balance()

R1

S3

SAccount

SAccount ~SAccount Modinterest Cal. Interest Print

R5

P3

S16

S17

S18

R6

S19

R7

S20

S21

R8

S22

P1

S1

S2

S4

S5

S6

R2

S7

S8

R3

P2

S9

S11

S10

S12

513

R4

S14

S15

144

Modification of a function in the class

The technique to select test cases in the proposed approach is applied to a programming

example of C++ to show the selection of test cases. The case study takes computes the

simple interest and compound interest by taking the inputs of present value, rate and time.

There is a function modify in the class Interest, that does the task of modifying the

interest rates. This function has been modified. This function prior to modification

modifies the value of interest rate to compute the simple interest. Later a statement has

been added in the modified function. This statement modifies the value of interest rate to

compute the compound interest. The code of program prior to modification is shown

below:

Source code for the consider Case Study

class Interest

{

protected:

double r;

double cr;

public:

Interest();

void modify();

{

S1 r = r + (r* 0.1);

}

};

class SInterest :: public Interest

{

145

protected:

int p,t;

double si;

public:

SInterest(int x, double y, int z)

{

S2 p = x;

S3 r = y;

S4 t = z;

}

void cal_interest()

{

S5 si = (p*r*t) / 100;

}

void print()

{

S6 cout<<” Interest is: “<< si;

}

class CInterest :: public interest

{

protected:

double ci;

int p, t;

public:

CInterest (int x, double y, int z)

{

S7 p = x;

S8 cr = y;

S9 t = z;

}

void cal_interest()

146

{

S10 ci = p* pow((1+cr/100), t);

}

void print()

{

S11 cout<< “ Interest is: “<<ci;

}

};

int main()

{

int p, t;

double r, cr;

while(1)

{

Interest iob;

cout<<” Enter the values of p,r,cr and t;

cin>> p>>r>>cr>>t;

if(t == 0)

break;

if(t == 1)

iob = SInterest(p, r, t);

else

iob = CInterest(p, r, t);

iob.modify();

if(p > 1000)

{

iob.calculateinterest();

iob.print();

}

}

147

After modification of function modify in class Interest, the code of program is shown

below:

class Interest

{

protected:

double r;

double cr;

public:

Interest();

void modify() // modified function

{

S1 r = r + (r* 0.3);

S12 cr = cr + (cr*0.3);

cout<<” Executed modify”;

}

};

class SInterest :: public Interest

{

protected:

int p,t;

double si;

public:

SInterest(int x, double y, int z)

{

S2 p = x;

S3 r = y;

S4 t = z;

}

void cal_interest()

{

148

S5 si = (p*r*t) / 100;

}

void print()

{

S6 cout<<” Simple Interest is: “<< si;

}

class CInterest :: public interest

{

protected:

double ci;

int p, t;

public:

CInterest (int x, double y, int z)

{

S7 p = x;

S8 cr = y;

S9 t = z;

}

void cal_interest()

{

S10 ci = p*(1+cr/100)
t;

}

void print()

{

S11 cout<< “ Compound Interest is: “<<ci;

}

};

 int main()

{

int p, t;

double r, cr;

149

while(1)

{

cout<<” Enter the values of p,r,cr and t;

cin>> p>>r>>cr>>t;

if(t == 0)

{

Interest iob;

iob.modify();

break;

}

elseif(t == 1)

{

 SInterest s1(p, r, t);

s1.modify();

s1.calculateinterest();

s1.print();

break;

}

elseif(t == 2)

{

CInterest c1(p, r, t);

c1.modify();

c1.calculateinterest();

c1.print();

}

}

Construction of OPDG: In the Figure 5.7 OPDG of the modified program is

constructed. The modified statement in the OPDG is colored red and also all other

statements which have been affected due to modification are also colored red.

150

Figure 5.7: OPDG for Modification of a Function in a Class

Interest

 Interest Modify

SInterest

Print Cal_interest

R1

S1

S12 R2

S2

S3

S4

R3

S5

R4

S6

CInterest

CInterset Cal_interest Print

R5

S7

S8

S9

R6

S10

R7

S11

SInterest

151

Designing of test cases

 Each test case executes a sequence of function calls according to the input provided. The

total number of test cases according to this application program is three. By applying the

proposed approach only TestCase3 executes the affected function (Cal_interest of class

CInterest) have been affected i.e the statements executed by TestCase3 comes under the

dynamic slice of the modified function. Although all the three test cases execute the

modified function, but the TestCase1 and TestCase2 don‟t have any effect on their

output. Total number of test cases is shown in the Table 5.3.

Table 5.3: Test Cases Designed Before the Modification of a Function in a Class

Inputs P R cr t Output

TestCase1 1500 1.5 1.5 0 Executed modify

TestCase2 1500 1.5 1.5 1 Executed modify SimpleInterest is:29.25

TestCase3 1500 1.5 1.5 2 Executed modify CompoundInterest is:1983.75

 Table 5.4: Test Cases After the Modification of a Function in a Class

Inputs P R Cr t Output

TestCase1 1500 1.5 1.5 0 Executed modify

TestCase2 1500 1.5 1.5 1 Executed modify SimpleInterest is:29.25

TestCase3 1500 1.5 1.5 2 Executed modify CompoundInterest is:2142.03

Test case selected for re-execution is shown in the Table 5.5.

Table 5.5: Test Case Selected for Re Execution for Modification of a Function

Inputs P R Cr T Output

TestCase3 1500 1.5 1.5 2 Executed modify

Compound Interest is:2142.03

152

Only TestCase3 needs to be rerun, because the dynamic slice of the variable with respect

to modified variable „cr‟ comes under the TestCase3. When TestCase1 and TestCase2 are

executed they have no effect on the output. They don‟t execute the functions which can

have effect on output due to modification.

Addition of a Function in Class

During the modification of a class a function may be added in the class. To apply the

proposed approach the earlier example of class Account and SAccount is considered. In

this example a new function called getbonus() is added in the class SAccount. This

function getbonus() calculates the bonus given to the accountholder and credits that

bonus to his account and also modifies the value of variable called annualInterestRate.

The code of program is given below.

Source code for consider Case Study

Class Account

{

protected:

char name [20];

int ano;

char type;

double acc_balance;

public:

account() {};

void credit(double);

void debit(double);

double getbalance();

};

153

Account :: Account (double initialdeposit, char *aname, int no, char atype)

{

c1p1 if(initialdeposit < 0.0)

s1 cout<<” Invalid entry”;

s2 acc_balance = 0;

else

s3 acc_balance = initialdeposit;

s4 strcpy (name, aname);

s5 ano = no;

s6 type = atype;

}

void Account :: credit (double deposit)

{

s7 acc_balance += deposit;

s8 cout<<” Credited to account”;

}

bool Account :: debit (double withdraw)

{

c2p2 if(withdraw > acc_balance)

{

s9 cout<<” Invalid entry”;

s10 return false;

}

else

{

s11 acct_balance -= withdraw;

s12 cout<< “Debited to account”;

s13 return true;

}

}

double Account :: getbalance ()

154

{

s14 cout<<” Current account balance is:”<< acc_balance;

s15 return acc_balance;

}

class SAccount :: public Account

{

private:

double savingBalance;

double earnedInterest;

double annual_interestrate;

double bonus;

public:

SAccount(double);

~SAccount();

void calcInterest();

void print();

void modinterest(double);

void getbonus();

};

SAccount :: SAccount(double savDeposit, double interestrate) : Account(

savDeposit, char *aname, int no, char atype)

{

C3P3 if(savDeposit >=0)

{

S16 savingBalance = savDeposit;

}

else

{

S17 savingBalance = 0;

S18 cout<<” Invalid entry”;

}

155

S26 annualInterestRate = interestrate;

}

SAccount :: ~SAccount()

{

}

void SAccount :: modinterest(double newrate)

{

 S19annual_interestrate = newrate;

}

void SAccount :: calcInterest()

{

S20 earnedInterest = (Account :: acc_balance * annual_interestrate);

S21 credit(earnedInteresr);

}

void SAccount :: print()

{

S22 cout<<”Balance is: “<< Account :: getbalance();

}

void SAccount :: getbonus()

{

S23 bonus =(Account :: acc_balance * 10) / 100;

S24 credit (bonus);

S25 annualInterestrate = annualInterestrate – (annualInterest * 0.05) / 100;

}

 int main()

 {

char c;

char acname[30];

int acno;

char atype;

156

double ir;

cout<<”\n Account opening system:”;

cout<<”\n Enter the customer name”;

for(int i=0; (i=getche())! = „\0‟; i++)

acname[i] = c;

acname[i] = „\0‟;

cout<<”\n Enter the account number”;

cin>>acno;

cout<<”\n Enter the account type: „s‟ for savings and „c‟ for checking”;

cin>>atype;

cout<<”\n Enter the value of annual interest rate”;

cin>>ir;

SAccount s1(100,ir) :: Account(acname, acno, atype);

 while (s1.atype == „s‟)

 {

 while (1)

{

cout<<”\n Saving Account menu”;

cout<<”\n 1. Deposit”;

cout<<”\n 2. Withdraw”;

cout<<”\n 3. Compute interest”;

cout<<”\n 4. Get bonus”;

cout<<”\n 5. Get bonus and modify interest rate”;

cout<<”\n 6. Get bonus and compute interest”;

cout<<”\n 7. Display balance”;

cout<<”\n 8. Exit”;

cout<<”\n Enter your choice”;

cin>>ch;

if(ch == 1)

s1.credit(2500);

157

if(ch == 2)

s1.debit(500);

if(ch == 3)

s1.calculateinterest();

if(ch == 4)

s1.getbonus();

if(ch == 5)

{

s1.getbonus();

s1.calculateinterest()‟

}

if(ch == 6)

{

s1.getbonus();

s1.modinterest(45);

}

if(ch == 7)

s1.print();

else

{

cout<<”\n Invalid choice”;

}

continue;

}

}

Construction of OPDG : The OPDG graph of the above program is constructed in the

Figure 5.8. The new added function getbonus() in the class SAccount is colored red.

Also the statement in the new function which can have effect on the other functions is

158

also colored red.

Figure 5.8: OPDG for Addition of a Function in a Class

Account

Account() Credit() Debit() Get_Balance()

R1

S3

SAccount

SAccount ~SAccount Modinterest Cal. Interest Print

R5

P3

S16

S17

S18

R6

S19

R7

S20

S21

R8

S22

P1

S1

S2

S4

S5

S6

R2

S7

S8

R3

P2

S9

S11

S10

S12

513

R4

S14

S15

get bonus

R9

S24

S25

S23

159

Designing of Test Cases

In this example in the class SAccount a new function getbonus() has been added. This

function getbonus() computes the bonus. This function makes a call to the function

credit(). And this function also modifies the value of a variable called

annualInterestRate. So affected path will be identified and also slicing will be done based

on variable annualInterestRate. So all those functions will be identified where a use of

variable annualInterestRate has been done and output has been affected in that function

due to modification. The variable annualInterestRate which is given new definition in the

function getbonus() is used in the functions cal_interest() and mod_interest(). But only

the function cal_interest() need to be tested in combination with getbonus() , because in

the function cal_interest(), the modified variable is used to compute the interest, thus

output have been affected.Thus function cal_interest() comes under the dynamic slice of

new function. But in the function mod_interest() only a new definition is given to that

variable, so there is no need to run that function in combination with mod_interest().

Total test cases run to test the program are shown in the Table 5.6.

Table 5.6: Test Cases Designed for Addition of a Function in a Class

Inputs savingBalance Acname Acno Atype ir ch

TestCase 1 500 Ram 1261 S 1.5 1

TestCase 2 2000 Ram 1262 S 1.5 2

TestCase 3 4000 Ram 1231 S 1.6 3

TestCase 4 5000 Ram 1263 S 1.5 4

TestCase 5 2000 Ram 1261 S 3.5 5

TestCase 6 3000 Ram 1261 S 1.4 6

TestCase 7 3000 Ram 1264 S 1.2 7

Test cases that are selected are shown below in the Table 5.7.

160

Table 5.7: Test Cases Selected for Re-execution for Addition of a Function in a Class

Inputs savingBalance Acname acno Atype Ir Ch

TestCase 4 5000 Ram 1263 S 1.5 4

TestCase 5 2000 Ram 1261 S 3.5 5

5.2.5 Analysis of Proposed Approach

The Table 5.8 shows that there is significant percentage of reduction of test cases. The

percentage of reduction of test cases shows the effectiveness of proposed approach.

Table 5.8: Analysis of Proposed Approach

S.No. Programe Name No. Of test

cases

No. Of selected test

cases

% of reduction of

test cases

1 Addition of class 5 2 60%

2 Modification of function in

a class

3 1 66.6%

3 Addition of a function in a

class

7 2 71.42 %

5.3 A FAULT – SEVERITY BASED REGRESSION TEST CASE

PRIORITIZATION TECHNIQUE FOR OBJECT ORIENTED SOFTWARE

(FSRTCPTOOS)

In this section, a regression test case prioritization technique for object oriented programs

is proposed. One of the most important concepts in object-oriented programming is that

of inheritance. Inheritance allows us to define a class in terms of another class, which

makes it easier to create and maintain an application. This also provides an opportunity to

reuse the code functionality and fast implementation time. Inheritance makes the

161

subclasses dependent on the super class and a change in the super class will directly

affect the subclasses that inherit from it means retesting of all subclasses is required.

The probability of error propagation in inheritance hierarchy depends on the number of

inherited attributes/methods, level of class in inheritance hierarchy and the number of

descendent classes. So, the first level prioritization involves prioritizing the classes

depending on the number of descendents of that class, number of inherited

attributes/methods and level of the class in inheritance hierarchy. The proposed work

includes two level prioritization, in which the first level prioritization involves

prioritizing the classes using inheritance hierarchy whereas the second level prioritization

involves prioritizing the test cases of each class.

If number of levels are less than or equal to 3, the testing effort can be calculated as:

Testing effort = (number of descendents + number of inherited

attributes/methods) * (4 -level) --(5.1)

 If number of levels are greater than 3, the testing effort can be calculated as:

Testing effort = (number of descendents + number of inherited

attributes/methods) * (level - 3)--(5.2)

The base class at level 1 of inheritance hierarchy is always assigned highest priority. If

any error get propagated from this class, will affect the entire hierarchy, because all the

classes below this level will inherit the properties of base class. The second level of

prioritization is the ordering of test cases of each selected class and it is done by

technique fault coverage per unit time taken. Every test case is designed when program is

162

developed. The test case is stored with time taken by it and number of faults detected by

it. Each fault is assigned a weight on the basis of its criticality.

5.3.1 First Level Prioritization

The first level prioritization technique prioritizes the classes of object oriented software

using inheritance hierarchy. In inheritance hierarchy the classes at lower level inherits the

properties of classes at upper level. Hence, the derived classes are dependent on the base

classes, This dependency increases the probability of error propagation through the

inheritance hierarchy. Hence the classes should be tested in such an order that the classes

with higher probability of error propagation get tested first.

The technique for prioritizing the classes of object oriented software has been proposed

to find faults quickly. The probability of error propagation in inheritance hierarchy

depends on the number of inherited attributes/methods, level of class in inheritance

hierarchy and the number of descendent classes. The base class should be assigned the

highest priority because if any errors get propagated from this class, will affect the entire

hierarchy. So the classes should be ordered in such a way that error propagation can be

minimized.

The classes at lower level are assigned priority based on the level of class in inheritance

hierarchy, number of inherited attributes and number of descendent classes.

An algorithm has been proposed for prioritizing the classes of object oriented software

using inheritance hierarchy. The classes of inheritance hierarchy have inherent complex

relationships due to the dependency of derived classes over subclasses. This algorithm

prioritizes the classes in such a way so that faults could be found earlier and the

probability of error propagation through the inheritance hierarchy could be minimized.

The algorithm in Figure 5.9 describes the technique used for first level prioritization:

163

Figure 5.9: Algorithm for First Level Prioritization

5.3.2 Second Level Prioritization

Based on first level prioritization for prioritizing the classes of object oriented software,

now second level prioritization has been proposed so that test cases of each class can be

prioritized.

Second level prioritization is a technique to prioritize test cases on the bases of fault

coverage per unit time.

The classes are prioritized using first level prioritization are input to the second level

prioritization where the test cases of each individual classes are prioritized. The test cases

are prioritized based on fault weight and fault coverage. The fault weights are assigned

First_ level_ prioritization (P, n)

Where P is complete program and n is the number of levels in inheritance hierarchy.

Begin

1. Assign level number to each class in the inheritance hierarchy.

2. Assign highest priority to the base class at level one of the hierarchy.

3. For (level=2; level<=n; level++)

a) Find number of descendents for each class.

b) Find number of inherited attributes/methods for each class.

c) If no of levels is less than or equal to 3,then

Testing effort = (no. of descendents + no of inherited attributes/methods) * (4 - level)

 Else

Testing effort = (no. of descendents + no of inherited attributes/methods) * (level - 3)

d) Assign priority to each class depending on the value of testing effort.

 (highest testing effort value gets the highest priority)

end

164

based on severity and coverage is based on number of faults found by particular test case

in per unit time.

The test cases that detect faults which have not been discovered earlier and are more

critical are prioritized first. The algorithm in Figure 5.10 explains the second level

prioritization used for ordering the test case of each particular class of inheritance

heirarchy.

 Figure 5.10: Algorithm for Second Level Prioritization

//there are M test cases and N faults and each fault is assigned some weight.

Begin

1. T is original test suite, T‟ is prioritized test suite

2. Calculate fault_weight per unit time by each test case.

3. Arrange them in decreasing order.

4. Remove the best one from T and add it to T‟.

5. while(T! empty)

begin

6. Calculate weight of new faults detected per unit time of each test case.

// New Fault means those fault which are not detected by any test case in T‟.

7. Remove the best one from T and add it to T‟

8. Go to step 5.

end

9. Return T‟.

End

165

5.3.3 Proposed Fault Table (FSRTCPTOOS)

Faults can be categorized on the basis of severity, and assigned a weight on the basis of

structure of program. Weights of faults are shown in Table 5.9.

Table 5.9: General Fault Weight Table

Type of fault Fault weight

Type mismatch of arguments in function 2

Check condition in if block 2

Fault in Statements inside if block 1

Fault in switch statement 2

Fault in for loop 3

Fault in recursion 4

Fault in do while loop 2

Condition statement under condition statement 4

Loop under condition statement 3

Fault in nested loop 4

Lack of memory 3

Improper use of access specifier 3

External function not called properly 2

Improper Type casting 3

Exception handling problem 2

Method signature problem 2

166

5.3.4 Experimental Evaluation and Analysis of Proposed Work

In this section the proposed technique has been verified and analyzed by taking a case

study of student. Case Study consists of four classes, study, Lec_time, Sports_time and

Usetime. The class Study inherits two classes, Lec_time and Sports_time and the Lec_time

further inherits Usetime. The testing effort has been calculated by using number of

descendents, number of inherited attributes/ methods and the level of a class in

inheritance hierarchy.

Considered Case study

The inheritance hierarchy shown in Figure 5.11 has been used to analyze the proposed

technique.

Figure 5.11: Inheritance Hierarchy of Case Study

 Source Code of Considered Case Study

1.class study

2.{

3.public:

4.schedule(int a,int b)

 study

 Lec_time Sports_time

 usetime

167

5.{

6.get_lec_time(a,b);

7.if(hour<=3)

8.{

9.int ch=hour;

10.}

11.else

12.{

13.ch=4;

14.cout<<” college is closed”;}

15.switch(ch)

16.case1:

17.cout<<”maths class”;

18.break;

19.case2:

20.cout<<”physics class”;

21.break;

22.case3:

23.cout<<”chemistry class”;

24.break;

25.}

26.get_sports_time(a, b);

27.cout<<”the sports time now is=”a” hour ”b” min”;

28.}

29.}

class lec_time:public study

{

int hours;

int minutes;

168

public:

void get_lec_time(int h,int m)

{

if (h<=12 && m<60)

{

hours=h;

minutes=m;

}

}

void put_lec_time(void)

{

cout<<hours<<”hours and”;

cout<<minutes<<”minutes”<<\n;

}

}

class sports_time:public study

{

int hours;

int minutes;

void get_sports_time(int h,int m)

{

if(h<=12 && m<60)

{

hours=h;

minutes=m;

169

}

}

void put_sports_time(void)

{

cout<<hours<<”hours and”;

cout<<minutes<<”minutes”<<\n;

}

}

class usetime : public time

 {

 public:

 void sum (time t1, time t2)

 {

 minutes=t1.minutes+t2.minutes;

 hours=minutes/60;

 minutes=minutes%60;

 hours=hours+t1.hours+t2.hours;

 }

};

1.void main ()

2.{

3.lec_time t1, t2;

4.sports_time t4,t5;

170

5.usetime t3;

6.t1.get_lec_time (2, 45); // get t1

7.t2.get_lec_time (3, 30); // get t2

8.t3.sum (t1, t2); //t3=t1+t2

9.cout<<”t1=”t1.put_lec_time(); //display t1

10.cout<<”t2=”t2.put_lec_time(); //display t2

11.cout<<”t3=”t3.put_lec_time(); //display t3

12.t1.schedule (5, 34);

13.t1.get_sports_time (2, 45); // get t1

14.t2.get_sports_time (3, 30); // get t2

15.t3.sum (t1, t2); //t3=t1+t2

16.cout<<”t1=”t1.put_sports_time(); //display t1

17.cout<<”t2=”t2.put_sports_time(); //display t2

18.cout<<”t3=”t3.put_sports_time(); //display t3

19.getch();

20.}

First Level Prioritization (P, n)

The following calculations show the testing effort for each class and the priority assigned

to each class.

171

At Level 1

Study class has highest priority.

Level=1

No of descendent classes=2

No of inherited attributes/methods=0

Testing effort=(2+0)*(4-1)=2*3= 6

At Level 2

For class Lec_time

Level=2

No of descendent classes=1

No of inherited attributes/methods=1

Testing effort=(1+1)*(4-2)= 2*2= 4

For class Sports_time

Level=2

No of descendent classes=0

No of inherited attributes/methods=1

Testing effort=(1+0)*(4-2)=1*2=2

Now,assign priorities on the basis of testing effort values.

Priority(Lec_time)> priority(Sports_time)

172

At Level 3

For class Usetime

Level=3

No of descendent classes=0

No of inherited attributes/methods=3

Testing effort=(3+0)*(4-3)=3*1=3

Table 5.10: Priority Assigned to Each Class of Inheritance Hierarchy

Class name Priority number

Study 1

Lec_time 2

Sports_time 3

Usetime 4

Lower number indicates higher priority.

Second Level Prioritization

Test Case Prioritization of Class Study

The test cases of each class in the inheritance heirarchy are to be prioritized on the basis

of fault coverage using second level prioritization.

Priority(Study)> priority(Lec_time)> priority(Sports_time)> priority(Usetime)

173

Flow graph of class study with labelled edges

The labelled flow graph of class study is shown in Figure 5.12 The independent paths

have been recognized using flow graph and the test cases has been designed using

independent paths.

Test Cases of Class STUDY

On the bases of independent path test cases are designed. Test cases are shown in Table

5.11.

 Table 5.11: Test Cases of Class Study

Test Case Path Covered

TC1 ABCDEFHJKNQRSTU

TC2 ABCDEGIJKNQRSTU

TC3 ABCDEFHJLOQRSTU

TC4 ABCDEGIJLOQRSTU

TC5 ABCDEFHJMPQRSTU

TC6 ABCDEGIJMPQRSTU

Fault can be detected in class STUDY:

Fault1:- at node D, in definition of function

Fault2:- At E node, checking condition

Fault3:-at node J, switch statement

Fault4:-at node K

Fault5:-at node L

Fault6:-at node M

Fault7:-at node R

Each fault is assigned a weight using Table 5.9.

174

 A

 B

 C

 D

 E

 F G

 H I

 J

K L M

 O

 N O P

 Q

 R

 S

 T

 U

Figure 5.12: Flow Graph of Class Study

1,2,

3

4

5

6

7

8,9 11,1

2

1

0
13,1

4

1

5

16 19 22

17,1

8

20,2

1

23,2

4

25

2

6

27

28

29

7,8

9,10

11

12

13

14

15

16

17,1

8

19,20

175

The faults of class study are assigned weight as shown in Table 5.12.

Table 5.12: Faults Weight (Class Study)

Fault Number Fault Weight

1 2

2 2

3 2

4 1

5 1

6 1

7 1

Test cases and faults of class STUDY are shown in Table 5.13.

 Table 5.13: Faults Detected by Non Prioritized Test Cases (Class Study)

 TC1 TC2 TC3 TC4 TC5 TC6

F1(2) * * * * * *

F2(2) * * * * * *

F3(2) * * * * * *

F4(1) * *

F5(1) * *

F6(1) * *

F7(1) * * * * * *

total fault 8 8 8 8 8 8

time taken 5 7 11 4 10 12

APFD Result of Test Suite before Prioritization:-

Where TFi=ith fault is detected by which test case.

n=total number of test cases

m=total number of fault

APFD=1- TF1+TF2+………….+TFm + 1

 n*m 2n

TF1=1 TF2=1

176

TF3=1 TF4=1

TF5=3 TF6=5

TF7=1

APFD= 1 - (1+ 1 + 1 + 1 + 3 + 5 + 1) + 1

 6*7 2*10

APFD= 78%

Prioritization of test suite based on proposed algorithm

Step1: RFD = fault/time (rate of fault detection)

RFDTC1=8/5=1.60 RFDTC2=8/7=1.14

RFDTC3=8/11=0.72 RFDTC4=8/4=2.0

RFDTC5=8/10=0.80 RFDTC6=8/12=0.66

Step2: Sorting of RFD

 TC4, TC1, TC2, TC5, TC3, TC6

Step3: Remove TC4 from T and add TC4 to T‟

 Now T‟ ={ TC4}

 T = {TC1, TC2, TC3, TC5, TC6}

Step 4: Until T Is Not Empty

Step5: New Fault Coverage of Test Cases Per Unit Time

 RFDTC1=1/5=0.20 RFDTC2=1/7=0.14

RFDTC3=0 RFDTC5=1/10=0.10

RFDTC6=1/12=0.08

STep6: Remove TC1 from T and Add To T‟

177

 T = {TC2, TC3, TC5, TC6}

 T‟ ={TC4, TC1}

Step7: Go to Step 4

Step4: Until T Is Not Empty

Step5: New Fault Coverage of Test Cases Per Unit Time

 RFDTC2=0.00 RFDTC3=0

RFDTC5=1/10=0.10 RFDTC6=1/12=0.08

Step6: Remove TC5 from T and Add To T‟

 T = {TC2, TC3, TC6}

 T‟={TC4, TC1, TC5}

Step7: Go to Step 4

Step4: Until T is Not Empty

Step5: New Fault Coverage of Test Cases Per Unit Time

 RFDTC2=0.00 RFDTC3=0.00

 RFDTC6=1/12=0.00

Step6: Remove TC7 from T and Add To T‟

 T‟ ={TC4, TC1, TC5, TC2,TC6,TC3}

Step8: Return T‟ which is Prioritized Test Suite.

Prioritized test suite is shown in Table 5.14.

178

Table 5.14: Faults Detected by Prioritized Test Cases (Class Study)

 TC1(TC4) TC2(TC1) TC3(TC5) TC4(TC2) TC5(TC6) TC6(TC3)

Fault 1 * * * * * *

Fault 2 * * * * * *

Fault 3 * * * * * *

Fault 4 * *

Fault 5 * *

Fault 6 * *

Fault 7 * * * * * *

APFD of Prioritized Test Suite is 85%

Fault percent detection corresponding to each test case of random and prioritized test

suites are shown in Table 5.15.

Table 5.15: Percentage of Faults Detected by Test Cases

Non Prioritized Test

Cases

Fault % detected Prioritized Test Cases Fault % detected

TC1 71.4 TC1 71.4

TC2 71.4 TC2 85.7

TC3 85.7 TC3 100

TC4 85.7 TC4 100

TC5 100 TC5 100

TC6 100 TC6 100

Comparison of Prioritized and Non Prioritized Test Suite

Based on the analysis done in previous section the prioritized test suite is better as

compare to non prioritized test suite. Using APFD metric comparison is shown in Table

5.16.

179

Table 5.16: APFD Metric (Class Study)

TEST CASES APFD %

Non Prioritized 78%

Prioritized 85%

Fault percent detected by test case of non prioritized and prioritized test suite is shown in

Figure 5.13 and Figure 5.14 respectively.

Figure 5.13: Percentage of Faults Detected by Non Prioritized Test Suite

Figure 5.14: Percentage of Faults Detected by Prioritized Test Suite

0

20

40

60

80

100

120

1 2 3 4 5 6

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Executed Test Cases

Non Priotized Order

0

20

40

60

80

100

120

TC1 TC2 TC3 TC4 TC5 TC6

P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Executed Test Cases

Prioritized Order

180

Test Case Prioritization of Class lec_time

1.class lec_time:public study

2.{

3.int hours;

4.int minutes;

5.public:

6.void get_lec_time(int h,int m)

7.{

8.if (h<=12 && m<60)

9.{

10.hours=h;

11.minutes=m;

12.}

13.}

14.void put_lec_time(void)

15.{

16.cout<<hours<<”hours and”;

17.cout<<minutes<<”minutes”<<\n;

18.}}

Flow Graph of Class lec_time

Flow graph of class lec_time is shown in Figure 5.15.

Test Cases of Class lec_time: Test cases of class lec_time are shown in Table 5.17.

181

Figure 5.15: Flow Graph of Class Lec_time

Get_lec_time

 8

9

10

11

12

13

main

2,3,4,5

6

7

8

9

10

11

12

13

14,15,16

 17,18

 19,20

Put_lec_time

15

16

17

18

A

B

C

D

E

F

G

H

I

J

K

L

182

Table 5.17: Test Cases of Class lec_time

Test Case Path Covered

TC1 ABCDEFG

TC2 ABG

TC3 HIJKL

Faults of class lec_time are shown below:-

Fault 1:-Type mismatch of arguments at node A

Fault2:-check condition at node B

Fault3:-statement in if block

Fault4:-type mismatch of arguments at node H

The faults are assigned weight using Table 5.9 based on the structure of flow graph as

shown in Table 5.18.

Table 5.18: Faults Weight (Class Lec_time)

Fault Number Fault Weight

1 2

2 2

3 1

4 2

 The test case and fault table of class lec_time are shown in Table 5.19

183

Table 5.19: Test Case and Detected Faults of Class lec_time

Fault Name & Weight TC1 TC 2 TC3

Fault 1 (2) * *

Fault 2 (2) * *

Fault 3 (1) *

Fault 4 (2) *

Total fault weight 5 4 2

Time taken 6 2 3

Prioritized Order of Test Cases of Class Lec_time

The test suite is prioritized on the basis fault detection per unit time of test cases:

TC1, TC3, TC2

Because fault detection per unit time of test case 2 is more than that of test case 1and 3

Comparison of Prioritized and Non Prioritized Test Suite

Based on the analysis done in previous section the prioritized test suite is better as

compare to random test suite. Using APFD metric comparison is shown in Table 5.20.

Table 5.20: APFD Metric (Class Lec_time)

TEST CASES APFD %

Non Prioritized 66.67 %

Prioritized 75 %

Fault percent detection corresponding to each test case of non prioritized and prioritized

test suites are shown in Table 5.21:

184

Table 5.21: Percentage of Faults Detected by Test Cases

Non Prioritized Test Cases Fault % detected Prioritized Test Cases Fault % detected

TC1 75 TC1 75

TC2 75 TC2 100

TC3 100 TC3 100

Fault percent detected by test case of non prioritized and prioritized test suite is shown in

Figure 5.16 and Figure 5.17 respectively.

Figure 5.16: Percentage of Faults Detected by Non Prioritized Test Cases

Figure 5.17: Percentage of Faults Detected by Prioritized Test Cases

0

20

40

60

80

100

120

TC1 TC2 TC3P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Executed Test Cases

Non Prioritized Order

0

20

40

60

80

100

120

TC1 TC2 TC3P
e

rc
e

n
ta

ge
 o

f
Fa

u
lt

s
D

e
te

ct
e

d

Executed Test Cases

Prioritized Order

185

Test Case Prioritization of Class sports_time

1.class sports_time:public study

2.{ 3.int hours;

4.int minutes;

5.public:

6.void get_sports_time(int h,int m)

7.{

8.if(h<=12 && m<60)

9.{

10.hours=h;

11.minutes=m;

12.}

13.}

14.void put_sports_time(void)

15.{

16.cout<<hours<<”hours and”;

17.cout<<minutes<<”minutes”<<\n;

18.}

19.}

Flow Graph of Class sports_time:The flow graph for class sports_time is shown in

Figure 5.18.

Test Cases of Class sports_time : The test case of class sports_time are shown in

Table5.22:

186

 Table 5.22: Test Cases of Class sports_time

The faults detected for class sports_time are shown below:

Fault 1:-Type mismatch of arguments at node A

Fault2:-check condition at node B

Fault3:-statement in if block

Fault4:-type mismatch of arguments at node H

The Faults are assigned weight using Table 5.9 based on structure of flow graph as shown in

Table 5.23

Table 5.23: Faults Weight (sports_time)

Fault Number Fault Weight

1 2

2 2

3 1

4 2

The test cases and faults of class sports_time are shown in Table 5.24

Table 5.24 Test Case and Detected Faults of Class sports_time

Fault Name & Weight TC1 TC2 TC 3

Fault 1 (2) * *

Fault 2 (2) * *

Fault 3 (1) *

Fault 4 (2) *

Total fault weight 5 4 2

Time taken 6 2 3

Test Case Path Covered

TC1 ABCDEFG

TC2 ABG

TC3 HIJKL

187

Figure 5.18: Flow Graph of Class sports_time

H

Get_sports_time

 8

9

10

11

12

13

main

2,3,4,5

6

7,8,9

10,11

12

13

14

15

16

17

 18

181

818
 19,20

Put_sports_tim

e

15

16

17

18

A

B

C

D

E

F

G

I

J

K

L

188

Prioritized Order of Test Case of Class sports_time

The test suite is prioritized on the basis of fault detection per unit time of test cases:

TC1, TC3, TC2

Because fault detection per unit time of test case1 is more than that of test case 2 and test

case 3.

Therefore TC1 is ordered first, TC2 is ordered second and TC3 is ordered third.

Comparison of Prioritized and Non Prioritized Test Suite

Based on the analysis done in previous section the prioritized test suite is better as

compare to random test suite. Using APFD metric comparison is shown in Table 5.25.

Table 5.25: APFD Metric (Class sports_time)

Test CASES APFD %

Non Prioritized 66.67 %

Prioritized 75 %

Fault percent detection corresponding to each test case of non prioritized and prioritized

test suites are shown in Table 5.26.

Table 5.26: Percentage of Faults Detected by Test Cases

Non Prioritized Test

Cases

Fault % detected Prioritized Test Cases Fault % detected

TC1 75 TC1 75

TC2 75 TC2 100

TC3 100 TC3 100

189

Fault percent detected by test case of non prioritized and prioritized test suite is shown in

Figure 5.19 and Figure 5.20 respectively.

Figure 5.19: Percentage of Faults Detected Non Prioritized Test Cases

Figure 5.20: Percentage of Faults Detected by Prioritized Test Cases

Based on the analysis done in previous section the prioritized test suite is better as

compare to non prioritized test suite.

0

20

40

60

80

100

120

TC1 TC2 TC3P
e

rc
e

n
ta

ge
 o

f
D

e
te

ct
e

d
 F

au
lt

s

Executed Test Cases

Non Prioritized Order

0

20

40

60

80

100

120

TC1 TC2 TC3

P
e

rc
e

n
ta

ge
 o

f
Fa

u
lt

s
D

e
te

ct
e

d

Executed Test Cases

Prioritized Order

190

This is clear from the area under curve that fault percent detection by prioritized test suite

is better as compared to random test suite.

Test Case Prioritization of Class usetime

class usetime : public time

1. {

2. public:

3. void sum (time t1, time t2)

4. {/

5. minutes=t1.minutes+t2.minutes;

6. hours=minutes/60;

7. minutes=minutes%60;

8. hours=hours+t1.hours+t2.hours;

9. }

};

On the basis of code coverage test cases are designed here. There is only one function in

class 3.Only one test case is enough to cover all statements of function sum in class 3. So

there is no need to prioritize test cases of class 3.

The proposed technique is implemented on a case study and results are analyzed by average

percentage of fault detection metric. The result of proposed technique is shown in Table 5.27.

191

Table 5.27: Result of Proposed Technique

Class study TC4 TC1 TC5 TC2 TC6 TC3

Class lec_time TC2 TC1 TC3

Class sports_time TC2 TC1 TC3

Class usetime TC1

The comparison using APFD metric is shown in Table 5.28.

Table 5.28: Analysis of APFD Metric

Class name Non Prioritized Test Cases Prioritized Test Cases

Study 78 85

Lec_time 66.67 75

Sports_time 66.7 75

The analysis shows that proposed technique is better as compared to non prioritized test

case prioritization approach.

5.4 A HISTORY BASED TECHNIQUE FOR REGRESSION TEST CASE

PRIORITIZATION OF OBJECT ORIENTED SOFTWARE (HTRTCPOOS)

The proposed approach prioritizes the regression test cases on the basis of some factors

related to the past testing history and coverage of the code in term of classes of the

software which is going to be retested after incorporating some modifications in it. All

the considered factors have been shown in the Table 5.29. All the factors have been

192

assigned a positive weight which shows the capability of the test cases to discover the

maximum fault by consuming less time and cost. The weights of factors are totally

probabilistic. To assign the weight of factors a survey has been performed (See Appendix

F). The Participants participated in the survey are the Developer, Tester, Lead

Technology, etc. These factors may be considered for the prioritization factor for the

regression testing of the software. The value of the considered factors is determined by

using the information of past history of the test cases.

Table 5.29: Prioritization Key of Test Cases (HTRTCPOOS)

S.No. Factor Name Factor Weight

1 Severity of Bug .25

2 Capability of Detecting the Bug .2

3 Coverage of code .15

4 Impact on business .3

5 Execution Time .1

The test cases are thus prioritized on the basis of a value known as regression test case

prioritization value (RTCPV) which is calculated by the following Formula

 n

RTCPV = ∑ TFVi * FWI --(5.1)

 i=1

Where TFV is the estimated value of the ith factor and FW is factor weight of ith factor of

test case.

In regression test cases if the test cases are new then it is assigned the highest priority

because it is going to be executed first time and has the capability of detecting the

193

maximum faults. It may be possible that new test cases are more than one. In such type of

dilemma the newly test cases are prioritized on the basis of coverage of modified classes

and coverage of new classes

In the presented approach all the detected bugs are classified in different category on the

basis of the severity of the bugs. The five factors have been considered for prioritizing the

test cases. Every factor has been assigned a positive weight and value will be calculated

on the basis of the past history of the test cases. The overall process of test case

prioritization is shown in Figure 5.21, which is being a described further in subsequent

sections.

5.4.1 The Prioritization Factors Considered in the Presented Approach

(a) Severity of Bug: This factor use the classification of the bug on the basis of the their

impact on the software. Here the bugs are classified in the four categories. These

categories are critical bug, major bug, medium bug and minor bug. Here on the basis of

the past discovery of the bugs by test cases a scaling of bugs (0-10) may be given as

below in Table 5.30.

(b) Capability of Detecting the Bug (CDB): This [108] factor shows the caliber of the

test case to detect the maximum bugs by executing the test cases. The value of this can be

estimated by the Formula 5.2.

CDB = (TBC/TDB) *10 ---(5.2)

194

Where TDB is the total detected bug by all test cases and TBC is number of bugs

detected by the current test cases

(c) Coverage of Code (CC): This factor shows the coverage of the code in terms of

classes (modified and unmodified) and methods by the test cases. The value of this factor

is based on the basis of coverage of the modified and updated classes. This value can be

calculated by the following Formula

CC = (TCC / TC)*10-------------------------------(5.3)

Where TC is Total classes in the software and TCC is number of covered classes by the

test cases. On the basis of this formula the value between 0 to 10 is assigned

(d) Business Impact: This factor shows that if the particular function being covered by

the test cases is not executed successfully then how much it puts impact on the business

of customer. On the basis of the business impact by test cases the value between 0 to 10

is assigned.

(e) Execution Time (ET): This factor shows the time taken by the test case to execute

the target functionality. The value of this factor is assigned on the basis of the formula

given below

 ET = (PT/TT)*10 -------------------------------------(5.4)

Where PT is execution time ith test case , TT is the total time taken in executing all test

cases and ET is the estimated value of execution time of the particular test cases.

195

Figure 5.21: Overview of Proposed Approach (HTRTCPOOS)

Table: 5.30: Value Assigned to the Detected Faults

S.No. Value Categories of Bugs

1 10 All critical Bugs

2 8-9 Critical, major, medium and minor bugs

3 7 All Major Bugs

4 5-6 Major and Medium

5 4 All Medium Bugs

6 2-3 Medium and Minor

7 1 All Minor Bugs

Test Case Repository

Discovered Bugs

Bug Classifier

Business impact Severity of bug
Capability of detecting

the bug
Coverage of code Execution Time

New Test Cases

Calculation of RTCPV of Each

test cases

Ordered old test cases

Business Analysis

Ordered new test cases

Prioritized test Cases

196

5.4.2 Result and Analysis:

For the experimental applicability and analysis of the proposed approach, it has been

applied on a case study [169] implemented in Java. To check effectiveness of the

technique to detect rate of fault detection, intentionally some faults have been added in

the considered case study and the bugs are detected manually.

5.4.3 Case Study: In this case study the presented approach is applied on a practical

problem of Banking. In the considered example [169] the user can perform the operation

of deposit, withdrawal, calculate interest, and display the account information on saving

account and current accounts. Table 5.31 shows the test case history of the program

before applying the modification

Table 5.31: Testing History of Consider Case Study

Test case Count of detected Bugs Severity of Bug Execution time of test

case (cs)

TC1 1 Minor=1 .2

TC2 2 Major =1 , minor=1 .3

TC3 1 major=1 .25

TC4 1 Minor=1 .2

TC5 1 Major =1 .25

TC6 2 Minor=2 .25

TC7 2 Major=2 .3

TC8 2 Major=1 ,Medium=1 .35

TC9 3 Critical =1, Major =2 .35

TC10 1 Medium=1 .2

197

From the past testing history of the case study the total 16 bugs are discovered by

executing the 10 test cases. Now by using the above history the Table 5.32 shows the

values of various factors which are used to prioritize the test cases for regression testing.

Table 5.32: Determined Value of Considered Factors

Test

case

Determined

value of

severity of

Bug

Capability

of

Detecting

the bug

(CDB)

Execution

time of test

case (ET)

Impact

on

business

Coverage of

code (CC)

Estimated RTCPV

TC1 1 (1/16)*10=

.625

(.2/2.65)*1

0 =0.75

2 (4/5)*10 =8 (1*.25)

+(0..625*.2)+(.75*.1)+(

2*.3)+(8*.15) = 2.25

TC2 7 .80 1.13 8 8 5.623

TC3 5 .625 .94 8 8 5.069

TC4 1 .625 .75 9 8 4.35

TC5 5 .625 .94 5 8 4.169

TC6 1 .80 .94 2 8 2.304

TC7 5 .80 1.13 8 8 5.122

TC8 7 .80 1.32 9 8 5.942

TC9 9 1.87 1.32 9 8 6.656

TC10 3 .625 0.75 7 8 4.249

The ordered test cases are TC9, TC8, TC2, TC7,TC3, TC4, TC10,TC5,TC6,TC1

The Table 5.33 shows the order of the test cases after applying the random, reverse,

Nayak et al. [108] and the proposed approach

198

 Table 5.33.Test Case Order of the Various Approaches and Proposed Approach

S.No. Non Prioritized Nayak approach Proposed

approach

1 TC1 TC9 TC9

2 TC2 TC2 TC8

3 TC3 TC7 TC2

4 TC4 TC8 TC7

5 TC5 TC6 TC3

6 TC6 TC5 TC4

7 TC7 TC3 TC10

8 TC8 TC10 TC5

9 TC9 TC1 TC6

10 TC10 TC4 TC1

The Table 5.34 shows the faults detected by the test cases.

 Table 5.34: Faults Detected by Test Cases

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10

F1 * *

F2 *

F3 *

F4 *

F5 * *

F6 *

F7 *

F8 *

F9 *

F10 *

F11 *

F12 *

F13 *

F14 *

F15 *

199

The APFD of non prioritized, Nayak approach and the proposed approach is shown in

Figure 5.22 to Figure 5.24

Figure 5.22: APFD Graph of the Unordered Test Cases

Figure 5.23: APFD Graph of the Test Cases Ordered by Nayak et. al. Approach

0

2

4

6

8

10

12

14

16

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Nayak Approach

APFD = 59.6%

200

Figure 5.24: APFD Graph of the Test Cases Ordered by Proposed Approach

5.4.4 Comparative Study of the Proposed Approach

The Figure 5.25 and Table 5.35 show that the proposed approach is to discover the

maximum faults earlier as compare to the other approaches. The result of the proposed

approach is very promising and helps to reduce the testing cost of the software.

Table 5.35: APFD Value of the Proposed Approach and Others Approaches

S.No. Approach Applied Percentage of APFD

1 Non Prioritized Approach 50%

2 Nayak et. al. Approach 59.6%

3 Proposed Approach 63.6%

0

2

4

6

8

10

12

14

16

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Proposed Approach

APFD = 63.6%

201

Figure 5.25: Comparison of APFD Graph of Various Approaches

5.5 CONCLUSION

In this chapter test case prioritization techniques to prioritize the regression test suite

have been presented. In the first technique test cases are selected using the OPDG and

dynamic slicing. In the second, classes are prioritized on the basis of the calculated

testing effort followed by the prioritization of test cases of the prioritized class based on

the types of fault detected by the test cases. In third technique, some past history factors

have been considered to prioritize the test cases. Every factor has been assigned a

positive weight which helps to detect the maximum faults. For experimental validation

and applicability all the techniques have been applied on the different software. The

result shows the efficacy of the techniques

0

2

4

6

8

10

12

14

16

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

A
xi

s
Ti

tl
e

Nayak et.al Approach

Proposed Approach

Non Prioritized Approach

202

203

Chapter VI

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

In the proposed research work various techniques to prioritize the test cases for Unit,

Integration testing, System testing and Regression testing for Object Oriented Software

has been presented. To prioritize the test cases various factors have been considered. In

some techniques various surveys have been performed to determine the capability of the

factors to detect the faults. To prioritize the test cases of System testing, a Data Mining

tool named SPSS modeler is used on the four algorithms to determine the proposed

factors weight. For experimental verification and validation the proposed techniques have

been applied on the many software implemented in C++ and Java. To analyze the

effectiveness of the proposed approach the experimented results are compared with other

exited similar techniques and random approaches. From the outcomes it has been

observed that the proposed techniques help to reduce the testing cost and time to test the

software.

6.2 BENEFITS OF THE PROPOSED WORK

 Determination of the Affected Part of the Modified Software

With the help of the presented approach the tester can determine the affected part

of software by introducing the changes in the software. The tester can easily

204

determine the all the affected paths and select the test cases corresponding to the

determined affected paths. This helps to reduce the number of test cases which are

needed to be execute to ensure the correctness of the software.

 Reduction of Testing Cost and Time

The objective of the test case prioritization techniques to execute the test cases to

determine the maximum faults as earlier stage by utilizing the minimum resources

and time. It is very costly to detect and fix the bug at later stages. The detection

of the maximum faults as earlier stages of the software life cycle helps to reduce

the testing cost, time.

 Improve the Quality and Reliability of the Software:

In the presented work many test case prioritization technique consider the various

factors to prioritize the test cases. These factors are chosen on the basis of their

capability to introduce the errors in the software or if their impact on the working

of the software if they are not implemented in proper way. So by applying these

techniques they enhance the quality of the software.

 Customer Satisfaction:

With the help of presented work the quality software delivered to the customer

within the specified time without any delay. The developed software is able to

fulfill all the functionality as desired by the customer.

205

6.3 FUTURE SCOPE

The work contained in this research work can be extended with the following list of

possible future research issues in Object oriented software.

 Test Case Prioritization of Object Oriented Technique using Data Mining

Algorithms

The algorithm used for mining the data is very helpful to retrieve the useful

information. Data mining technique may be used to prioritize the data by

analyzing the past history data of testing from the industry. Various algorithms

may be used to identify the relation present between the faulty test cases which

further helps to detect the maximum faults earlier as possible

 Testing the Proposed Techniques for the Industry Projects

The proposed test case prioritization techniques have been tested on small

projects. It would be better if these are applied on large scale industry projects.

 Test case prioritization for Acceptance level testing

In this thesis the test case are prioritized for unit, Integration, system and

regression testing levels. The acceptance testing is very challenging process which

may affect the quality of the software. It would be better to analyze the factors

that must be considered to prioritize the test cases of acceptance testing.

206

 Test Case prioritization by Identifying the Human Factors

Various new technologies have been used to reduce the testing cost of the

software. It will increase day by day. So human factors play a very important role

to produce quality software. It will be beneficial to identify and analyze the

human factors such as stress, motivation etc. to prioritize the test cases at unit,

integration, system testing

207

REFERENCES

[1] G. Rothermel, R.H. Untch, Chengyun Chu, M.J. Harrold “Prioritizing test cases

for regression testing” IEEE Transactions on Software Engineering Volume:

27, Issue 10, Oct 2001 Page(s) 929 - 948

[2] Naresh Chauhan Software Testing Principles and Practices. New Delhi Oxford

University Press, 2010

[3] Imran Bashir, Amrit L. Goel Testing Object Oriented Software Life Cycle

Solutions. Verlag Springer New York ,1999

[4] N. Hunt. “Performance Testing C++ code” Journal of Object Oriented

Programming, Jan 1996, pages 22-25,.

[5] E. V. Berard . “Essays on Object Oriented Software Engineering” Volume1.

Prentice Hall, 1992

[6] G. Booch. “Object Oriented Analysis and Design with Applications”

 Benjamin /cummings, 2
nd

 edition, 1994

[7] D. DeChampeaux, D. Lea, and P. faura. “Object – Oriented Systems

Development” . Addison – Wesley, 1993

[8] N. Hunt. “Unit Testing” Journal of Object Oriented Programming pages 18-23,

Feb, 1996.

[9] J. O. Coplien. “Advanced C++ Programming Styles and Idioms” Addison

Wesley 1992

[10] B. Hetzel. “The Complete Guide of Software Testing”. John Wiley & Sons, 2
nd

edition , 1988

[11] Yogesh Singh, Software Testing. Delhi Combridge University Press, 2012.

[12] Object Oriented Design Principle http://www.oodesign.com/design-

principles.html

[13] W stevens . G. Myers and L. Constantine “ Structured Design” IBM System

Journal. Vol. 13 , 1974, PP. 115 -130 ,.

[14] Johann Eder, Gerti Kappel and Michael Schrefl “Coupling and Cohesion in

Object Oriented Systems”

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22G.%22&searchWithin=%22Last%20Name%22:%22Rothermel%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22G.%22&searchWithin=%22Last%20Name%22:%22Rothermel%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:%22Chengyun%20Chu%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22M.J.%22&searchWithin=%22Last%20Name%22:%22Harrold%22&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=20775
http://www.oodesign.com/design-principles.html
http://www.oodesign.com/design-principles.html

208

https://pdfs.semanticscholar.org/48ec/8e707053100b253cdee1f4aa56399a7ce94

c.pdf

[15] Durga Prasad Mohapatra, Rajib Mall and Rajeev Kumar “An Overview of

Slicing Techniques for Object-Oriented Programs” Informatica 30 ,2006 253–

277

[16] M. J. Harold, J. A. Jone, T. Li, and D. Liang, “Regression test selection for java

software,” in Proc. of the ACM Conference on OO Programming, Systems,

Languages, and Applications, 2001.

[17] E. Engstrm and P. Runeson, “A Qualitative Survey of Regression Testing

Practices,” in Proc. of the International Conference on Product-Focused

Software Process Improvement, 2010, pp. 3–16.

[18] M. J. Harrold, J. D. McGregor, and K. J. Fitz- patrick, “Incremental Testing of

Object Oriented Class Structure", Proc. of 14th International Conf. on Soft-

ware Engineering, 1992, pp. 68 - 80.

[19] G. Rothermel and M. J. Harrold. “Analyzing Regression Test Selection

Techniques” IEEE Transactions on Software Engineering, 22(8) 1996, 529-551.

[20] S. Elbum, A. Malishevsky, G Rothermel “ Prioritization Test Cases For

Regression Testing” Proceeding of International symposium on Software

Testing and Analysis, 2000, PP 102-112.

[21] Gupta V , Chhabra JK, “Package Coupling Measurement In Object Oriented

Software” Journal of Computer science& Technology 24(2), 2009, 273-283

Mar. .

[22] Vipin Sexena and Santosh Kumar, “Impact of Coupling and Cohesion In Object

Oriented Technology” Journal of Software Engineering and Application , 2012

,5, 671- 676

[23] Roger T Alexander and Jeff Offutt, “Coupling based testing of O – O

Programs” Journal of Universal Computer Science ,2004.

[24] Eric Arisholm Lionel C. Briand and Audun Foyen , “Dynamic Coupling

Measurement for Object Oriented Software” Simula TR and Carleton TR SCE

,2003 ,03 -18.

[25] Varun Gupta and Jitender kumar Chhabra “Dynamic Cohesion Measures for

https://pdfs.semanticscholar.org/48ec/8e707053100b253cdee1f4aa56399a7ce94c.pdf
https://pdfs.semanticscholar.org/48ec/8e707053100b253cdee1f4aa56399a7ce94c.pdf

209

Object Oriented Software” Journal of system Architecture 57. 2011, 452–462p.

[26] Jeff Offut ,Avnur Abdruazic , Stephen R. Schach “Quantitatively Measuring

Object Oriented Couplings” Online at http://www.uml.org/

[27] V. S. Bidve and Akhil Khare “ Simplified Coupling Metrics for Object Oriented

Software” International Journal of Computer Science and Information

Technology, Vol. 3(2), 2012 , 3389 – 3842

[28] Roger T Alexander and Jeff Offut “ Coupling – based Testing of O-O

Programs” https://cs.gmu.edu/~offutt/rsrch/papers/ootest-jucs.pdf

[29] Roger T. Alexander , jeff offut and James M. Bieman “ Fault Detection

Capabilities of Coupling – based OO Testing” Proceeding of International

Conference Software Reliability Engineering (ISSRE 2002) PP 207-218.

[30] Kailash Patidar, Ravinder kumar gupta and Gajendra singh Chandel “Coupling

and Cohesion Measures in Object Oriented Programming” International Journal

of Advanced Research in Computer Science and Software Engineering, Volume

3, Issue 3 March, 2013.

[31] Zhenvi Jin and Jefferson Offutt “Coupling based Criteria for Integration

Testing” Software Testing , Verification and Reliability 8, 1998,133-154.

[32] Shahzada Zeeshan Waheed, Usman Qamar “Data Flow Based Test Case

Generation Algorithm for Object Oriented Integration Testing” 2015 6th IEEE

International Conference on Software Engineering and Service Science

(ICSESS) 23-25 Sept. ,2015

[33] Aynur Abdurazic , Jeff offut “Coupling Based Class Integration and Test Order”

AST „2006 International Workshop on Automation of Software Test 2006’ USA

[34] Michela Pedroni and Bertrand Meyer “Object-Oriented Modeling of Object-

Oriented Concepts A Case Study in Structuring an Educational Domain”

http://link.springer.com/chapter/10.1007/978-3-642-11376-5_15#page-1

[35] Sujata Khatri, Dr. R. S. Chhillar and Mrs Arti sangwan “Analysis of Factors

Affecting Testing in Object Oriented Systems” International Journal of

Computer Science & Engineering Page(s)1191-1196 Vol. 3 Issue. 03.

[36] Muhammad Rabee Saheen and Lydie du Bousquet, “Relation Between the

Depth of Inheritance Tree and Number Of Methods to Test” International

http://www.uml.org/
https://cs.gmu.edu/~offutt/rsrch/papers/ootest-jucs.pdf
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Shahzada%20Zeeshan%22&searchWithin=%22Last%20Name%22:%22Waheed%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Shahzada%20Zeeshan%22&searchWithin=%22Last%20Name%22:%22Waheed%22&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7324165
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7324165
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7324165
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7324165
http://link.springer.com/chapter/10.1007/978-3-642-11376-5_15#page-1

210

Conference on Software Testing , Verification, and Validation’ 2008.

[37] Gagandeep Makkar, Jitender kumar Chh abra and Rama Krishna Challa,

“Object Oriented Inheritance Metric Reusability Perspective” International

Conference on Computing, Electronics and Electrical technologies[ICCEET],

2012

[38] Nasib S. Gill and Sunil Sikka, “Inheritance Hierarchy based Reuse &

Reusability Metrics in OOSD” International Journal on Computer Science and

Engineering (IJCSE) Vol. 3 No. 6 June 2011.

[39] R. Harrison, S. Counsell, and R. Nithi “Experimental Assessment of the Effect

Of Inheritance on the Maintainability of Object Oriented System” Journal of

System and Software Volume 52 Issue 2 -3 , June 1 2000 pages 173-179

[40] John Daly, Andrew Brooks, James Miller, Marc Roper and Murray Wood “An

Empirical Study Evaluating Depth of Inheritance on the Maintainability of

Object Oriented Software” Empirical Software Engineering Volume 1, Issue 2,

1996, pp 109-132

[41] Arti Chhikara, R. S. Chhillar and Sujata Khatri “ Evaluating the Impact of

Different types of Inheritance on the Object Oriented Software Metrics”

International Journal of Enterprise Computing and Business Systems ISSN

(Online) : 223-8849 Volume 1 Issue 2 July 2011

[42] Mary Jean harrold and John D. McGreger, “Incremental Testing of object

Oriented Class Structure” In Proceedings of the 14th international Conference

on software Engineering 1992, 68-80.

[43] Gregory Seront ,Migual Lopez , Valerie Paulus and Naji Habra, “On the

relationship between the cyclomatic complexity and the degree of object

orientation” aszt.inf.elte.hu

[44] John D. McGregor Brian A. Malloy and Robecca L. Siegmund, “A

Comprehensive Program Representation of Object Oriented Software” Annals

of Software Engineering 1996, volume 2. Issue 1, pp 51 – 91

[45] Loren Larson and Mary Jean Harrold, “Slicing Object Oriented Program”

International Conference on software Engineering – ICSE, pp 495- 505

[46] Anand Krishnaswamy, “Program Slicing : An application of Object oriented

https://link.springer.com/journal/10664

211

Program Dependency Graphs” 11/1995 Source: CiteSeer psu.edu

[47] David P. Tegarden, Steven D. Sheetz and David E. Monarchi, “A Software

Complexity Model of Object-Oriented Systems” Decisions Support System

13(3-4), 1995, 241-262

[48] Santosh kumar swain ,subhend ukumar pani and Durga Prasad Mahapatra,

“Model based Object-Oriented Software Testing” Journal of Theoretical and

Applied Information Technology. 2010, 30- 36.

[49] David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima and Cris Chen, “A Test

Strategy for Object-Oriented Programs” COMPSAC 1995 : 239 – 244

[50] Bernhard rumpe, „Model based testing of Object-Oriented Systems‟ FMCO,

Volume 2852 of Lecture Notes in Computer Science, 2002, page 380-402,

Springer

[51] Pranshu Gupta and David A. Gustafson “Analysis of the Class Dependency

Model for Object Oriented Faults” International Journal of Advances in

Engineering & Technology, May 2012, ISSN: 2231 – 1963

[52] Mahfuzul Huda, Arya Y.D.S., Khan M.H. “Evaluating Effectiveness Factor of

Object Oriented Design: A Testability Perspective” In: International Journal of

Software Engineering & Application (IJSEA), Vol. 6, No. 1, January (2015)

[53] Malviya Anil Kumar and Singh Vibhooti “Some Observation on

Maintainability Estimation Model for Object Oriented software in requirement ,

Design , Coding and Testing Phases” International Journal of Advanced

Research in Computer Science and Software Engineering Volume 5, Issue 3,

ISSN: 2277 128X ,March (2015).

[54] Dinesh Kumar Saini, “Security Concern of Object Oriented Software

Architectures” International Journal of Computer Applications (0975 – 8887)

Volume 40 – No. 11, February 2012.

[55] Bremananth R and Thushara R “Fault Predictions in Object Oriented Software”

International Journal on Computer Science and Engineering Vol. 1(2), 2009,

81-88

[56] Parvinder Singh Sandhu and Gurdev Singh, “Dynamic Metrics for

Polymorphism in Object Oriented Systems” World Academy of science,

212

Engineering and Technology 15, 2008.

[57] Victor R. Basili, Lionel Briand and Walcelio L. Melo, “A Validation of Object-

Oriented Design Metrics as Quality Indicators‟ Technical Report , Univ. of

Maryland, Dep. Of Computer Science, College Park, MD, 20742 USA April

1995.

[58] Seyyed Mohsen Jamali, “Object Oriented Metrics”SVM Header Parse 0.2, 2006

[59] Amarnath Singh et. al, “Rephrasing Essentials of Object Oriented

Programming based on Testing Pre – requisites” (IJCSIT) International

Journal of Computer Science and Information Technologies, Vol. 2(5) , 2011,

2055 – 2059

[60] Chhikara Arti Chhikara and R.S Chhillar “Analyzing Complexity of Java

Program Using Object Oriented Software Metrics” IJCSI International Journal

of Computer Science Issues, Vol. 9, Issue 1, No.3 ISSN :1694-0814, January

2012.

[61] Bruntink Magiel and Deursen Arie Van.: Predicting Class Testability using

Object Oriented Metrics” 4
th

 IEEE International Workshop on Source Code

Analysis and Manipulation, 2004, pp .136-145, Chicago, IL, US.

[62] Ravinder kr. Gupta , Hari ji and Gajender Singh Chandel “ A Fault based

Object Oriented Testing using UML” International Journal of Scientific &

Engineering Research volume 3, Issues 5, May 2012.

[63] Xiaolan Wang, Yanshuai Zhang, Hong He, “Method of the Object Oriented

Program Exact Testing” Proceedings of the Second Symposium International

Computer Science and Computational Technology” (ISCCST‟09) Huangshan, P.

R. China, 26 – 28 , Dec. 2009, PP 039 – 044

[64] Juliana Georgieva, Veska Gancheva, “Functional testing of Object - Oriented

Software” International Conference of Computer System and Technologies –

CompSysTech „ 2003.

[65] Nirmal Kumar Gupta and Mukesh Kumar Rohil, “Using Genetic Algorithm for

Unit Testing of Object-Oriented Software” First International Conference on

Emerging Trends in Engineering and Technology July 16 – July 18, 2008, pp

308- 313

213

[66] E.S.F. Najumudheen , Rajib Mall and Debasis Samanta, “A Dependence

Representation for Coverage Testing of Object Oriented Programs” Journal of

Object Technology ETH Zurich, Chair of Software Engineering, @ JOT 2010

[67] Ranjita Kumar Swain, Prafulla Kumar Behera and Durga Prasad Mohapatra

“Generation and Optimization of Test Cases for Object Orinetd Software using

State Chart Diagram” http://arxiv.org/ftp/arxiv/papers/1206/1206.0373.pdf

[68] David C. Kung , jerry Gao and pei Hsia, “Class, Firewall , Test Order, and

Regression Testing of Object Oriented Programs‟. JOOP 8(2) ,1995, 51 – 65.

[69] Tarun Dhar Diwan and Ganesh Suryavanshi, “Automatic Test Case Generation

in Object Oriented Programming” International Journal of Electronics and

Computer Science Engineering. ISSN 2277 – 1956, 2012

[70] Chhabi Rani Panigrahi and Rajib Mall, “A Hybrid Regression Test Selection

Technique for Object Oriented Software” International Journal of Software

Engineering and its Applications Vol. 6, No. 4, October 2012.

[71] Gregg Rothermel and Mary Jean Harrold, “Selecting Regression Tests for

Object -Oriented Software” Proc. Of the Int’l.conf. on Software Maintenance,

Victoria, CA, September 1994, pages 14 – 25.

[72] Gregg Rothermel, Mary Jean Harrold and JeinayDedhia, “Regression Test

Selection for C++ Software” Journal of Software Testing, Verification, and

Reliability, Vol. 10, no. 2, June 2000.

[73] Alessandro Orso, Nanjuan Shi and Mary Jean Harrold, “Scaling Regression

Testing to Large software System” Proceedings of the12
th

 ACM SIGSOFT

Twelfth International Symposium on Foundations of Software Engineering pages

2004, 241 – 251,

[74] Yanping Chen, Robert L. Probert and D Paul Sims, “Specification Based

Regression Test selection with Risk analysis” CASCON’ 02 Proceedings of the

Conference of the Centre for Advanced Studies on Collaborative Research, 2002

[75] Sheng Huang , Zhongjie li , and Jun Zhu , Yanghua Xiao and Wei Wang, “A

Noval Approach to Regression Test Selection for J2ee Applications” 27
th

IEEE International Conference on Software Maintenance (ICSM) 2011

[76] SubhrakantaPanda andDurga Prasad Mohapatra, “Application of Hierarchical

http://arxiv.org/ftp/arxiv/papers/1206/1206.0373.pdf

214

Slicing to Regression Test Selection of Java Programs” Infosys Labs Briefings

VOL 11 NO 2 2013.

[77] Samaila Musa, Abu Bakar M. D. Sultan, Azim Abd Ghani and Dr. Salmi

Bahrom. “Regressiong testing framework based on extended system

Dependence graph for object oriented programs” Proc. of the intl. Conf. On

Advances in Computer Science & Electronics Engineering – CSEE 2014.

[78] David Binkley “The Application of Program Slicing to Regression Testing” by,

Computer Science Department, Loyola College in Maryland, 1998

[79] S. k. mondal and H. Tahbildar “ Regression Test Case Minimization for Object

Oriented Programming using New Optimal Page Replacement Algorithm”

International Journal of Software Engineering and its Applications vol.8 no.6

(2014).

[80] Sapna P G and Arunkumar Balakrishnan “An Approach for Generating Minimal

Test Cases for Regression Testing” Procedia Computer Science 47 ,2015,188 –

196

[81] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

“Test case prioritization: An empirical study”. In Proceedings of the

International Conference on Software Maintenance, Oxford, September, 1999

[82] Mohammad Rava , Wan M. N. Wan- Kadir “A Review on Prioritization

Techniques in Regression Testing” International Journal of Software

Engineering and Its Applications Vol. 10, No. 1 ,2016, pp. 221-232

[83] Sun-Woo Kim, John A Clark and John A McDermid, “Assessing Test Set

Adequacy for Object- Oriented Programs using Class Mutation” 28 JAIIO

Symposium on Software Technology (SOST), 1999, pages 72-83

[84] Ranjita kumara swain , Prafulla kumar Behera and Durgaparsad mohapatra,

“Minimal Test case generation for object software with state chart”

International Journal of Software Engineering & Application (IJSEA), Vol. 3

No.4, 2013.

[85] Ranjita Kumari Swain, Prafulla Kumar Behera and Durga Prasad Mohapatra

“Generation and Optimization of Test Cases for Object Oriented Software using

State Chart Diagram” arXiv preprint arXiv: 1206.0373,2012, arxiv.org

215

[86] Chhabi Rani Panigrahi and Rajib Mall, “A Heuristic – based Regression Test

Case Prioritization Approach for Object Oriented Programs” Innovations

Syst. Softw Engg DOI 10 ,1007 / 11334 – 013 – 0221, 2014 pages 155-163.

[87] J. A. Parejo, Ana B. Sanchez, S. Sagura, A. R. Corets, Robert E. Lopez-

Herrejon, and Alexander Egyed “Multi- Objective Test Case Prioritization

Technique For Highly Configurable Systems: A Case Study” The Journal Of

System Software 122,2016, 287 -310

[88] J. Ding , X. Yi Zhang “ Comparison Analysis Of Two Test Case Prioritization

Approaches With The Core Idea Of Adaptive”29th Chinese Control And

Decision Conference (CCDC),2017

[89] R. Haung, J. Chen, D. Towey, Alvin T. S. Chan, Yansheng Lu “Aggregate-

Strength Interaction Test Suite Prioritization” The Journal Of System And

Software 99,2015, 36-51

[90] Hao Dan, Zhang Lingming, Zhang Lu, Rothermel Gregg and Mei Hong “ A

Unified Test Case Prioritization Approach” ACM Transactions on Software

Engineering and Methodology , Vol. 9, No.4 Article 39, 2010

[91] Vincenzo Martena , Alessandro Orso and Mauro Pezze, “Interclass Testing of

Object Oriented Software” ICECCS IEEE Computer Society, 2002, page 135 –

144.

[92] Muhammad Shahid & Suhaimi Ibrahim “A New Code based Test Case

Prioritization Technique” International Journal of software Engineering and its

Application Vol. 8, No 6 , 2014, PP. 31 – 38.

[93] R. Beena & S. Sarala “Code coverage based test case selection and

prioritization” International Journal of Software Engineering and Applications

(IJSEA), Vol.4, No. 6 2013

[94] Alessandro Marchetto , Md. Mahfuzul Islam and Waseem Asghar “A Multi-

Objective Technique to Prioritize Test Cases” IEEE Transactions on Software

Engineering , Volume 20 Issue 10 2016

[95] Prakash. N and Rangaswamy T. R “ Weighted Method For Coverage Based

Test Case Prioritization” Journal of Theoretical and Applied Information

Technology 20th October 2013. Vol. 56 No.2 © 2005 - 2013 JATIT & LLS.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Md.%20Mahfuzul%20Islam.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Waseem%20Asghar.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

216

[96] K. Uma Maheshwar and S. Vasundra “ Automated Functional Test Case

Prioritization For Increased Rate Of Fault Detection” International Journal for

Innovative Research in Science & Technology| Volume 1 | Issue 7 | December

2014 ISSN (online): 2349-6010

[97] Preeti and S. Bishnoi “ Test Case Prioritization Technique for Object Oriented

Software based On Source Code Analysis” International Journal of all Research

Education and Scientific Method volume 4 issue 6 ,2016.

[98] Ajay Kumar Jena, Santosh Kumar Swain, Durga Prasad Mohapatra “Test Case

Generation And Prioritization Based On Uml Behavioral Models” Journal of

Theoretical and Applied Information Technology Vol.78, 2015.

[99] Zengkai Ma and Jianjun Zhao “Test Case Prioritization based on Analysis of

Program Structure” 15th Asia-Pacific Software Engineering Conference, 2018

[100] Chhabi Rani Panigrahi and Rajib Mall “Test Case Prioritization for Object

Oriented Programs” Set labs Briefings Vol 9, No 4, 2011.

[101] Patwa Sanjeev and Malviya Anil Kumar “Impact of Coding Phase on Object

Oriented Software Testing” Covenanat Journal of Informatics and

Communication Technology(CJICT) Vol.2, No. 1, June, 2014.

[102] Mitrabinda Ray and Durga Prasad Mohapatra “Code-based prioritization: a pre-

testing effort to minimize post-release failures” Innovations Syst Softw Engg8 :

279 -292 DOI 10.1007/s 11334 -012 – 0186- 3, 2012.

[103] R. Krishnamoorthy and S. A. Saahaya Arul Mary, “Factor Oriented Requirement

Coverage Based System Test Case Prioritization of New and Regression Test

Cases”, International Journal of Information Software Technology, Vol. 51, No.

4, pp. 799–808, 2009.

[104] R. Kavitha , N. Sureshkumar “Test Case Prioritization for Regression Testing

based on Severity of Fault” (IJCSE) International Journal on Computer Science

and Engineering Vol. 02, No. 05, 2010, 1462-1466

[105] E. Ashraf, A. Rauf, and K. Mahmood “Value based Regression Test Case

Prioritization” Proceedings of the World Congress on Engineering and

Computer Science 2012 Vol. I WCECS 2012, October 24-26, , San Francisco,

USA, 2012

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4724512

217

[106] Arup Abhinna Acharya, Sonali Khandai And Durga Prasad Mohapatra “A

Novel approach for test case prioritization using Business criticality test value”

International Journal of Computer Applications (0975 – 8887) Volume 46–

No.15, May 2012.

[107] T. Muthusamy and Seetharaman. K “ A New Effective Test Case Prioritization

for Regression Testing based on Prioritization Algorithm” International Journal

of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of

Computer Science FCS, New York, USA Volume 6– No. 7, January 2014 –

www.ijais.org

[108] S. Nayak, C. Kumar and S. Tripathi “ Enhancing Efficiency Of The Test Case

Prioritization Technique By Improving The Rate Of Fault Detection” Arab

Journal of Science and engineering © King Fahd University of Petroleum &

Minerals 2017.

[109] Hyuncheol Park, Hoyeon Ryu and Jongmoon Baik “Historical Value-Based

Approach for Cost-cognizant Test Case Prioritization to Improve the

Effectiveness of Regression Testing” Second International Conference on

Secure System Integration and Reliability Improvement 2008

[110] R. Kavitha and N. Sureshkumar “Requirement based Test Case Prioritization

with Equal Weightage for factors” International Conference on Mathematical

Computer Engineering - ICMCE – 2013

[111] Monika Tayagi and Sona Malhotra “An Approach for Test Case Prioritization

Based on Three Factors” I.J. Information Technology and Computer Science,

2015, 04, 79-86

[112] Thillaikarasi Muthusamy and Dr. Seetharaman.K “A Test Case Prioritization

Method with Weight Factors in Regression Testing Based on Measurement

Metrics” International Journal of Advanced Research in Computer Science and

Software Engineering Volume 3, Issue 12, December 2013.

[113] Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin, Daniel

Sundmark and Stig Larsson “Towards Earlier Fault Detection by Value-Driven

Prioritization of Test Cases Using Fuzzy TOPSIS” Advances in Intelligent

Systems and Computing 448, Springer International Publishing Switzerland

http://www.ijais.org/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579773
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579773
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579773

218

2016.

[114] Everton L. G. Alves , Patricia D.L. Machado, Tiago Massoni and Miryung Kim

“Prioritizing Test Cases for Early Detection of Refactoring Faults Software

Testing , Verification and Reliability Volume 26 Issue 5, 2016.

[115] Md. Junaid Arafeen and Hyunsook Do “Test Case Prioritization Using

Requirements-Based Clustering” IEEE Sixth International Conference on

Software Testing, Verification and Validation 2013.

[116] H. Sarikanth, M. Cashman and M. B. Cohen “ Test Case Prioritization Of Build

Acceptance Tests For An Enterprise Cloud Application: Industrial Case Study”

The journal of system and software 119, 2016 122- 135

[117] Debasish Kundu et.al, “ System Testing for Object Oriented System With Test

Case Prioritization” Journal Software Testing, Verification & Reliability

volume 19 issue 4, December, 2009.

[118] Sangeeta Sabharwal , RituSibal and Chayanika Sharma, “Applying Genetic

Algorithm for prioritization of Test Case Scenarios Derived from UML

diagrams” IJCSI International Journal of Computer Science Issues, Vol. 8,

Issue 3, No. 2, May 2011 ISSN 1694 – 0814.

[119] Chhabi Rani Panigrahi , Rajib Mall “A Heuristic-based Regression Test Case

Prioritization Approach for Object-Oriented Programs” Innovation System

Software Engineering , 2014 10:155 -163 DOI 10.1007/s

[120] Samaila Musa, Abu-Bakar Md Sultan, Abdul-Azim Bin Abd-Ghani and Salmi

Baharom “Software Regression Test Case Prioritization for Object-Oriented

Programs using Genetic Algorithm with Reduced-Fitness Severity” Indian

Journal of Science and Technology, Vol 8(30), DOI:

10.17485/ijst/2015/v8i30/86661, 2015, ISSN (Print) : 0974-6846

[121] Fevzi BELL , M¨ubariz ˙ , Bekir Taner “Model-Based Test Case Prioritization

using Cluster Analysis: A Soft-Computing Approach” Turkish Journal of

Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Science

,2015

[122] A. Bakar Md sultan, .A. Ghani, S. Baharom and S. Musa. “An Evolutionary

Regression Test Case Prioritization Based on Dependence Graph and Genetic

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6569023
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6569023
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6569023
mailto:panigrahichhabi@gmail.com%20chhabi@cse.iitkgp.ernet.in

219

Algorithm for Object Oriented Programs” 2nd International Conference on

Emerging Trends in Engineering and Technology, May 30-31 , 2014

London(UK).

[123] P. Saraswat, A. Singhal et.al. “ A Hybrid Approach For Test Case Prioritization

And Optimization Using Meta – Heuristics Techniques” 978-1-4673-6984-8/16/

© 2016 IEEE 2016

[124] S. Mahajan, S. D. Joshi and V. Khanna “Component Based Software System

Test Case Prioritization With Genetic Algorithm Decoding Technique Using

Java Platform” 2015 International Conference On Computing Communication

Control And Automation, 2015

[125] S. Ghai, S. Kaur “ A Hill Climbing Approach For Test Case Prioritization”

International journal of Software engineering and its Applications Vol. 11, No.

3 , 2017, pp. 13-20 http://dx.doi.org/10.14257/ijseia.2017.11.3.0.

[126] S. Kumar mohapatra and srivinas Prasad “ Test Case Reduction using Ant

Colony Optimization for Object Oriented Programs” International Journal of

Electrical and Computer Engineering vol. 5 no.6 ,2015

[127] S. Raju, G. V. Uma „Factors Oriented Test Case Prioritization Technique in

Regression Testing using Genetic Algorithm” European Journal of Scientific

Research ISSN 1450-216X Vol.74 No.3 (2012), pp. 389-402 © EuroJournals

Publishing, Inc. 2012 http://www.europeanjournalofscientificresearch.com

[128] Rijwan Khan, Mohd amjad “Automatic Test Case Generation Of Test Cases For

Data Flow Test Path Using K Mean Clustering And Genetic Algorithm”

International Journal of Applied Engineering Research ISSN 0973-4562

Volume 11, Number 1 ,2016, pp 473-478

[129] Ahlam Ansari, Anam Khan, Alisha Khan, Konain Mukadam “Optimized

Regression Test Using Test Case Prioritization” Proceeding of Computer

Science Volume 79, 2016, pages 152-160

[130] Erum Ashraf , Tamim Ahmed Khan , Khurrum Mahmood and Shaftab Ahmed

“Value based PSO Test Case Prioritization Algorithm” International Journal of

Advanced Computer Science and Applications, Vol. 8, No. 1, 2017.

[131] Gregg Rothermel , Roland H.Untch , Chengyun Chu , Mary Jean Harrold

http://dx.doi.org/10.14257/ijseia.2017.11.3.0
http://www.europeanjournalofscientificresearch.com/
https://www.sciencedirect.com/science/article/pii/S1877050916001514#!
https://www.sciencedirect.com/science/article/pii/S1877050916001514#!
https://www.sciencedirect.com/science/article/pii/S1877050916001514#!
https://www.sciencedirect.com/science/article/pii/S1877050916001514#!

220

“Prioritizing Test Cases for Regression Testing” IEEE Transactions on Software

Engineering Volume: 27, Issue: 10, Oct 2001.

[132] Wasiur Rhmann, Taskeen Zaidi and Vipin Saxena “Test Cases Minimization

and Prioritization Based on Requirement, Coverage, Risk Factor and Execution”

Time British Journal of Mathematics & Computer Science 14(1): 1-9, 2016,

Article no.BJMCS.23269

[133] M. Yoon, Eunyoung Lee, M. Song, B. Choi “ A Test Case Prioritization through

Correlation of Requirement and Risk” Journal of Software Engineering and

Applications, 2012, 5, 823-835 http://dx.doi.org/10.4236/jsea.2012.510095

Published Online October 2012 (http://www.SciRP.org/journal/jsea)

[134] C. Hettiarachchi, H. Do, B. Choi et.al. “Risk Based Test Case Prioritization

Using A Fuzzy Expert System” Information And Software Engineering 69,2016

1- 15

[135] W. Rahman, V. Saxena “ Fuzzy Expert System Based Test Case Prioritization

From UML State Machine Diagram Using Risk Information” I.J. Mathematical

Sciences and Computing, 2017, 1, 17-27 Published Online January 2017 in

MECS (http://www.mecs-press.net) DOI: 10.5815/ijmsc.2017.

[136] Hema Srikanth, Charitha Hettiarachchi, Hyunsook Do “Requirements Based

Test Prioritization Using Risk Factors: An Industrial Study” Information and

Software Technology , 2015, doi: 10.1016/j.infsof.2015.09.002

[137] HojunJaygarl, Kai-Shin Lu, Carl K. Chang, “GenRed: A Tool for Generating

and Reducing Object-Oriented Test Cases‟ COMPSAC‟ 10‟: IEEE International

Computer Science and Applications Conference,(Seoul, Korea), 2009

[138] Ming - Chi Lee Tamkang „An Object oriented Testing Framework Specified in

Z Notation‟ Journal of Science and Engineering , vol. 2 No. 1 PP. 11-22 1999

[139] Tao Xie, KunalTaneja , Shreyas Kale and Darko Marinov, “Towards a

framework for differential Unit testing of object- oriented Programs”

Proceeding AST ’07 Proceeding of the Second International Workshop on

Automation of Software Test page , 2007.

[140] Taewoong Jeon, Hyon Woo Seung and Sungyoung Lee, “Embedding Built in

Tests in Hot Spots of an object oriented Framework” ACM SIGPLAN Notices

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=20775
http://www.scirp.org/journal/jsea

221

Volume 37 Issue 8, August 2002 pages 25-34

[141] Jehad Al Dallal, “Testing Object Oriented Framework Hook Methods”

Kuwait Journal of Science & Engineering, 2008.

[142] Taweesup Apiwattanapong , Alessandro Orso, Maty Jean Harrold “J Diff: A

Differencing Technique and Tool for Object Oriented Programs” Autom

Software Engg(2007) 14:3 – 36 DOI 10. 1007/s 10515 – 006 – 0002 – 0

springer science Business Media, LLC 2006.

[143] Amie L. Souter, Tiffany M. Wong, Stacey A Shindo, Lori L. Pollock , „

“TATOO : Testing and analysis Tool for Object Oriented Software” TACAS

2001 : 389 – 403.

[144] Yu Xia Sun , Huo Yan Chen , “A new approach and CASE tool for object-

oriented dynamic tests at cluster-level with data types of pointer and reference”

7th International Conference, TACAS 2001 Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy,

April 2–6, 2001 Proceedings pp 389-4032001 10.1007/3-540-45319-9_27

Springer Berlin Heidelberg.

[145] Jitenedra S. Kushwaha and Mahendra S. Yadav “Testing for object oriented

software” Indian Journal of Computer Science and Engineering (IJCSE).

[146] Anna Derezinska , Anna Szustek, “Object Oriented Testing Capabilities and

Performance Evaluation of C# Mutation System” CEE – SET ,2009 , 229 –

242

[147] Christian Engel , Christoph Gladisch, Vladimir Klebanov and Philipp

Rummer, “Integrating Verification and Testing of Object Oriented Software”

TAP, 2008,182-191

[148] Bor – Yuan Tsai , Simon Stobart , Norman Parrington and Ian Mitchell, “A

State based Testing Approach Providing Data Flow Coverage in Object

Oriented Class Testing” The 12
th

 International Software Quality Week

Conference 1999(QW 99) , May 1999, San Jose USA

[149] Recardo Terra and Macro Tulio “A Dependency Constraints Language to

Manage Object Oriented Software Architectures” Software Practice and

Experience, 2009; 39: 1073–1094p. Willy inderscience DOI: 10.1002/spe.931.

222

[150] Hyunsook Do, Gregg Rothermel and Alex Kinneer, “Empirical Studies of

Test Case Prioritization in a J Unit testing Environment” Digital Object

Identifier : 10.1109/ISSRE.2004.18 PublicationYear : 2004, Pages (s): 113-124

[151] Nicolas Frechette, Linda Badri and Mourad Badri, “Regression Test Reduction

for Object Oriented Software : A Control Call Graph based Technique and

Associated tool” Hindawi Publishing Corporation ISRN Software Engineering

Volume 2013 , Article ID 420394, 10 pages

[152] http://cppprojectcode.blogspot.in/2010/09/income-tax-calculation.html.

[153] http://cppprojectcode.blogspot.com/2010/09/football-players-position-

information.html

[154] http://www.cppforschool.com/project/super-market-billing.html

[155] https://github.com/

[156] H. Kumar, vedpal, N. chauhan “ A Unit – Test Case prioritization Technique

based on source code analysis” International journal of Advanced Research in

computer science and software engineering Volume 5, Issue 4, 2015

[157] Vedpal and N. Chauhan “A Multi factor Coverage based Test case Prioritization

Technique for object oriented software” International Journal of System and

Software Engineering Volume 3 Issue 1 2015.

[158] http://cppprojectcode.blogspot.in/2010/09/dispensary-management-system.html

[159] https://projectabstracts.com/1690/payroll-management-system-in-java.html

[160] https://www.ibm.com/products/spss-modeler

[161] http://www.public.iastate.edu/~kkoehler/stat557/tree14p.pdf

[162] Reeta Sahoo C++ Projects. Delhi : Khanna Book Publishing Co. (P) LTD. 2000

[163] G. Rothermel, M,j. Harrold, “A Safe Efficient Regression Test Selection

Technique,” ACM Transactions on software engineering Methodology 1997;

6(2): 173–210p.

[164] HesterDecoz “Capgemini World quality report 2014”

www.worldqualityreport.com

[165] http://www.ece.ubc.ca/~matei/EECE417/BASS/ch09lev1sec6.html

[166] C. Zhao and Roger T. Alexander, “Testing AspectJ Programs using Fault-Based

Testing”, Workshop on Testing Aspect Oriented Programs (WTAOP’07),

http://cppprojectcode.blogspot.in/2010/09/income-tax-calculation.html
http://cppprojectcode.blogspot.com/2010/09/football-players-position-information.html
http://cppprojectcode.blogspot.com/2010/09/football-players-position-information.html
http://www.cppforschool.com/project/super-market-billing.html
https://github.com/
http://cppprojectcode.blogspot.in/2010/09/dispensary-management-system.html
https://projectabstracts.com/1690/payroll-management-system-in-java.html
https://www.ibm.com/products/spss-modeler
http://www.public.iastate.edu/~kkoehler/stat557/tree14p.pdf
http://www.ece.ubc.ca/~matei/EECE417/BASS/ch09lev1sec6.html

223

Vancouver, British Columbia, Canada, ACM, 2007

[167] https://www.d.umn.edu/~gshute/softeng/object-oriented.html

[168] https://en.wikipedia.org/wiki/Programming_language

[169] S. Malhotra and S. Chaudhary “ Programming in Java” Oxford University Press

[170] ftp://public.dhe.ibm.com/software/analytics/spss/support/Stats/Docs/Statistics/Al

gorithms/13.0/TREE-QUEST.pdf

[171] https://cran.r-project.org/web/packages/C50/vignettes/C5.0.html

[172] https://www.statsoft.com/Textbook/Classification-and-Regression-Trees

[173] https://en.wikipedia.org/wiki/Fragile_base_class

[174] S.R. Chidamber , C.F. Kemerer “A metrics suite for object oriented

design” IEEE Transactions on Software Engineering Volume: 20, Issue: 6, Jun

1994

https://www.d.umn.edu/~gshute/softeng/object-oriented.html
https://en.wikipedia.org/wiki/Programming_language
ftp://public.dhe.ibm.com/software/analytics/spss/support/Stats/Docs/Statistics/Algorithms/13.0/TREE-QUEST.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/support/Stats/Docs/Statistics/Algorithms/13.0/TREE-QUEST.pdf
https://cran.r-project.org/web/packages/C50/vignettes/C5.0.html
https://www.statsoft.com/Textbook/Classification-and-Regression-Trees
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22S.R.%22&searchWithin=%22Last%20Name%22:%22Chidamber%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22C.F.%22&searchWithin=%22Last%20Name%22:%22Kemerer%22&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7320

224

225

APPENDIX A

Source code for Performing Simple Banking Functions

class account

{

char cust_name[20];

int acc_no;

char acc_type[20];

public

void get_accinfo()

{

cout<<”\n enter customer name:-“;

cin>>acc_no;

cout<<”enter account type:-“;

cin>>acc_type;

}

void display_accinfo()

{

cout<<”\ncustomer name:-“<<cust_name;

cout<<”\n account number:-“<<acc_no;

cout<<”/n account type:-“<<acc_type;

}

};

class cus_account: public account

{

static float balance;

public:

void disp_cusbal()

{

cout<<”/n balance:-“<<balance;

}

void deposit_cusbal()

226

{

float deposit;

cout<<”\n enter amount to deposit”;

cin>>deposit;

balance=balance+deposit;

}

void withdraw_cusbal()

{

float penalty,withdraw;

cout<<”\n balance:-“<<balance;

cout<<”\n enter amount to withdraw”

cin>>withdraw;

balance=balance-withdraw;

if(balance<500)

{

penalty=(500-balance)/10;

balance=balance-penalty;

cout<<”\n balance after deducity penalty:”<<balance;

}

elseif(withdraw>balance)

{

cout<<”/n you have to take permission for bank overdraft facility”;

balance=balance+withdraw;

}

else

cout<<”/n after withdrawl your balance reveals:”<<balance;

}

};

class sav_account: public account

{

static float sav_bal;

227

public:

void disp_savbal()

{

cout<<”\n balance:-“<<savbal;

}

void deposit_savbal()

{

float deposit,interest;

cout<<”\n enter amount to deposit:-“;

cin>>deposit;

savbal=savbal+deposit;

interest=(savbal*2)/100;

}

void withdraw_savbal()

{

float withdraw;

cout<<”\n balance:-“<<savbal;

cout<<”\n enter amount to withdraw:-“;

cin>>withdraw;

savbal=savbal-withdraw;

if(withdraw>savbal)

{

cout<<” you have to take permission for bank overdraft facility\n”;

savbal=savbal+withdraw;

}

cout<<”\n after withdraw your balance “,<<savbal;

}

};

float cus_acct||balance;

float sav_acct||savbal;

void main()

228

{

clrscr();

cus_acct c1;

sav_acct s1;

cout<<”\enter s for saving customer and c for current account customer\n”;

char type;

cin>>type;

int choice;

if(type==’s’ ||type==’s’)

{

s1.get_acc_info();

while(1)

{

clrscr()

cout<<”/n choose your choice”;

cout<<”1)deposit\n”;

cout<<”2)withdraw\n”;

cout<<”3)display balance\n”;

cout<<”4)display with full detail\n”;

cout<<”5)exit\n”;

cout<<”6)choose your choice:-“;

cin>>choice;

switch(choice)

{

case 1: s1.deposit_savbal();

getch();

break;

case 2: s1.withdraw_savbal();

getch();

break;

case 3:s1.disp_savbal();

229

getch();

break;

case 4: s1.display_accinfo();

s1.disp_savbal();

getch();

break;

case 5: goto end;

default!cout<<”by year”;

}

}

}

else

{

{

c1.get_accinfo();

while(1)

{

cout<<”\n choose your choice\n”;

cout<<”1)deposit”;

cout<<”2)withdraw”;

cout<<”3)display balance”;

cout<<”4)display with full details”;

cout<<”5)exit”;

cout<<”6)choose your choice:’;

cin>>choice;

switch(choice)

{

case 1: c1.deposit_cusbal();

getch();

break;

case 2: c1.withdraw_cusbal();

230

getch();

break;

case 3: c1.disp_cusbal();

getch();

break;

case 4: c1.display_accinfo();

c1.disp_cusbal();

getch();

break;

case 5: goto end;

default : “cout<<try again”;

}

}

}

end

}

}

231

APPENDIX B

Source Code to Calculate the Income Tax

package org.j2eedev.calc;

import java.lang.*;

import java.io.*;

class Employee

{

 String name;

 String des;

 int pay;

 int gp;

 char posting;

 public int hra;

 public int cpf;

 int tax_inc;

 public void getdata() throws IOException

 {

 System.out.println("Pleae ented the details");

 BufferedReader br = new BufferedReader (new

InputStreamReader(System.in));

 name=br.readLine();

 System.out.println("Pleae ented the designation");

 des = br.readLine();

 System.out.println("Pleae ented payscale");

 pay = Integer.parseInt(br.readLine());

 System.out.println("Pleae ented gradepay");

232

 gp = Integer.parseInt(br.readLine());

 System.out.println("Pleae ented posting(M/NM");

 posting = (char)br.read();

 }

 public void display()

 {

 //System.out.println ("Name of Student: "+name);

 System.out.println ("Name of the employee: "+name);

 System.out.println ("Designation of the employee"+des);

 System.out.println ("Pay scale of the Employee: "+pay);

 System.out.println ("grade pay of the employee "+gp);

 System.out.println ("Posting of the employee "+posting);

 }

 class temp_employee

 {

 int salary1 = 10000;

 int get_salary()

 {

 return salary1;

 }

 void print()

 {

 System.out.println ("Salary of the employee "+salary1);

 }

 }

}

class Result extends Employee

{

 /*public void gross()

233

 {

 int total= pay+gp;

 float percent=total*100/200;

 System.out.println ("Percentage: "+total+"%");

 }*/

 public void display()

 {

 super.display();

 }

}

class salary extends Employee

{

 int g_salary,da,total;

public void gross() throws IOException

{

 super.getdata();

 System.out.println(" gross salary is" +posting);

 if(posting == 'M')

 {

 total = pay+gp;

 hra = (20*total)/100;

 cpf = (10*total)/100;

 da = total;

 g_salary = total+hra+da;

 //System.out.println(" gross salary is" +g_salary);

 }

 else

 {

 total = pay+gp;

 hra = (20*total)/100;

234

 cpf = (10*total)/100;

 da = total;

 g_salary = total+hra+da;

 }

 }

 public void display()

 {

 System.out.println(" gross salary is" + g_salary);

 System.out.println(" HRA is" + hra);

 System.out.println(" CPF" + cpf);

 }

 }

class deduction extends Employee

{

 void total_deduction() throws IOException

 {

 //super.gross();

 //int total = pay + gp;

 //int hra = 20*total/100;

 int t_hra = 12 * hra;

 //int cpf = 10*total/100;

 int t_cpf = 12*cpf;

 int t_ded = t_hra +t_cpf;

 System.out.println(" total deduction of employee" +t_ded);

 }

}

class saving extends Employee

235

{

 void tex_saving() throws IOException

 {

 //super.getdata();

 //super.display();

 BufferedReader kr = new BufferedReader (new

InputStreamReader(System.in));

 System.out.println("enter the ammount acc to 80 C");

 int am1 = Integer.parseInt(kr.readLine());

 System.out.println("enter the ammount acc to 80 d");

 int am2 = Integer.parseInt(kr.readLine());

 System.out.println("enter the ammount acc to mediclaim");

 int am3 = Integer.parseInt(kr.readLine());

 int total_saving = am1+am2+am3;

 System.out.println("total savings" +total_saving);

 }

}

class tax_cal extends Employee

{

 void tex() throws IOException

 {

 super.getdata();

 BufferedReader tr = new BufferedReader (new

InputStreamReader(System.in));

 System.out.println("plz enter the annula income");

 int inc = Integer.parseInt(tr.readLine());

 System.out.println("plz enter the deduction");

236

 int ded = Integer.parseInt(tr.readLine());

 System.out.println("plz enter the annual Saving");

 int sav = Integer.parseInt(tr.readLine());

 System.out.println("plz enter the sex of employee M?F");

 char ab = (char) tr.read();

 if (ab == 'M')

 {

 int t_sav = 200000+ ded+sav;

 tax_inc = inc - t_sav;

 }

 else

 {

 int t_sav = 200000+ ded+sav;

 tax_inc = inc - t_sav;

 }

 }

 public void display()

 {

 System.out.println(" income under the tex is"+tax_inc);

 }

}

class tax_paid extends tax_cal

{

 int tex;

 void paid() throws IOException

 {

 tex();

 try

237

 {

 if(tax_inc >= 500000)

 {

 tex = (20*tax_inc)/100;

 //System.out.println("total tex to be paid" +tex);

 }

 else

 {

 tex = (10*tax_inc)/100;

 //System.out.println("total tex to be paid" +tex);

 }

 }

 catch(Exception exp)

 {

 System.out.println(exp.toString());

 }

 }

 public void display()

 {

 System.out.println("total tex to be paid" +tex);

 }

 {

 }

}

/*class Result1 extends Student

{

238

 Result1(String n, int r, int m1, int m2)

 {

 super(n,r,m1,m2);

 }

 public void sum()

 {

 int total=(mark1+mark2);

 System.out.println ("Percentage: "+total+"%");

 }

 void display()

 {

 super.display();

 }

}*/

public class Multiple

{

 public static void main(String args[]) throws IOException

 {

 System.out.println("**************************");

 System.out.println("press1");

 System.out.println("press2");

 System.out.println("press3");

 System.out.println("press4");

 System.out.println("press5");

 System.out.println("press6");

 System.out.println("**************************");

 BufferedReader br = new BufferedReader (new

InputStreamReader(System.in));

239

 int choice = Integer.parseInt(br.readLine());

 Result R = new Result();

 salary s = new salary();

 deduction d = new deduction();

 saving s1 = new saving();

 tax_cal t = new tax_cal();

 tax_paid t1 = new tax_paid();

 Employee e = new Employee();

 Employee.temp_employee f = e.new temp_employee();

 switch(choice)

 {

 case 1:

 R.getdata();

 R.display();

 case 2:

 s.gross();

 s.display();

 case 3:

 s.gross();

 d.cpf = s.cpf;

 d.hra = s.hra;

 d.total_deduction();

 case 4:

 s1.getdata();

 s1.tex_saving();

 case 5:

 t.tex();

 case 6:

240

 t1.paid();

 t1.display();

 case 7:

 f.print();

 }

 }

}

241

APPENDIX C

Survey to Determine the Weight of Proposed Factors

Resources of Survey

In this survey 123 software professional participated working in various software

industries. The people being surveyed are the project managers, lead technology, team

lead, QA, Tester. The average experience of the software professional is approximate 8

years.

About Survey

The conducted survey is based on the factors related to the object oriented programming

language. The respondents were asked to assigned a positive weight to each factor. The

assign weight shows the capability to introduce the errors in the software. The sum of

assigned weights to factors should be 1. This survey was conducted to identify where

usually the errors are introduces and propagate from one level to another level. The

following Table C.1 Shows the Considered Factors.

Table C.1 Considered Factors

S.No. Factors

1 Class/Interface

2 Type Casting

3 Exception handling

4 Method Overloading

5 Native Method

6 Nested Class

7 Conditional Statements

8 Number of methods

Sample of Survey Form

Name ________________ Company

Name_____________________

On the basis of the criticality of the factor a weight is assigned to the factors given in table. The

assigned weight shows the capability of introducing the error in the software.

242

(1) The value of weight should be between the 0 and 1.

(2) The sum of the weights assigned to all factors should be 1

S.

No

Factor Weight Agree Neutral Disagree If disagree

then assign

weight

according

to you

1 Class/Interface .05

2 Type Casting .15

3 Exception

Handling

.3

4 Method

Overriding

.2

5 Native Method .1

6 Nested Class .05

7 Conditional

Statements

.05

8 Number of

Method

.1

All respondents participated indicated that the considered factors can affect the testing of

any software. By using the considered factors the testing of the software is very effective

and helps to reduce the cost of testing of software. A majority of the respondents were

agreed with the assigned value as shown below in the Table C.2. Other respondents have

partially different view abut assigned weight to the factors

 Table C.2 : Weight Assigned to Proposed Factors

S. No. Factors Weight

1 Class/Interface 0.5

2 Type Casting 0.15

3 Exception handling .3

4 Method Overloading .2

5 Native Method .1

6 Nested Class 0.5

7 Conditional Statements 0.5

8 Number of methods .1

243

The Result of analysis of survey of the all considered factors is shown in Figures From

C.1 to C.8

Figure C.1: Responses for Factor Class

Figure C.2: Responses for Factor Type Casting

0

20

40

60

80

100

Agree Neutral Disagree

Class

0

10

20

30

40

50

60

70

80

Agree Neutral Disagree

Type Casting

0

10

20

30

40

50

60

70

80

Agree Neutral Disagree

Exception Handling

244

Figure C.3: Responses for Factor Exception Handling

Figure C.4: Responses for Factor Method Overloading

Figure C.5: Responses for Factor Native Method

0

10

20

30

40

50

60

70

80

Agree Neutral Disagree

Method Overloading

0

20

40

60

80

100

Agree Neutral Disagree

Native Method

0

10

20

30

40

50

60

70

80

Agree Neutral Disagree

Nested Class

245

Figure C.6: Responses for Factor Native Method

Figure C.7: Responses for Factor Conditional Statements

Figure C.8: Responses for Factor Conditional Statements

0

20

40

60

80

100

120

Agree Neutral Disagree

Conditional Statements

0

20

40

60

80

100

120

Agree Neutral Disagree

Number of Methods

246

247

APPENDIX D

Survey to check the viability of some factors and assigned weight

Test case prioritization is a process to order test cases with the intention of finding

maximum faults as earlier as possible. Prioritization of the test cases is performed on the

basis of some factors. In this survey some factors are considered to prioritize the test

cases. Every considered factor has been assigned a positive weight within range of the 0

to 1 which shows the probability to introduce the error in the object oriented software if

the developer did not use it in right way. So you are requested to assign a weight that

suits to you on the basis of your experience. The Table D.1 shows the questionnaire of

the survey.

The Result of Survey analysis is given in figure 6. In the given figure weight ranges are

representing by the slabs as given below

Slab1 = 0=<Wt<.0.3

Slab2 = 0.3=<Wt<.0.5

Slab3 = 0.5=<Wt<0..8

Slab4 = 0.8=<Wt=1

Table D.1 Questionnaire of Performed Survey

S.No Factor Name Slab

1

Slab

2

Slab

3

Slab

4

1 Degree of

Method(DM)

2 No. of Input

variable (VU)

3 Decision statement

(DS)

4 Type Casting(TC)

5 Numerical

computations (NC)

6 Number of

loop(LS)

7 Number of variable

reused (VR)

8 Copying of objects

(CO)

9 Object/Data reads

from

248

database/File(RW)

10 Exception handling

(EH)

11 Virtual function

(VF)

12 Dynamic memory

allocation and

deallocation (MA)

13 Reference counting

(RC)

14 Proxy Objects (PO)

15 Type binded

inherited Function

(TIF)

16 Copy constructor

having pointer type

variable (CPV)

17 Non virtual

destructor (NVD)

18 Return object by

reference (RO)

Figure D.2. Analysis of Feedback from Participations

The weight is determined by the calculating the mean average of the weight assigned by

the participants.

0

10

20

30

40

50

60

70

80

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

R
ES

P
O

N
C

ES

CONSIDERED FACTORS

Slab1

Slab2

Slab3

Slab4

249

APPENDIX E

The snapshots of the working of SPSS Modeler is Shown in Figure E.1 to E.6

Figure E.1: Process to Obtain the Contribution Weight to Prioritized the Requirements

Figure E.2: Determined Contribution Weight of Requirement Factors

250

Figure E.3: Process to Obtain the Contribution Weight to Prioritized the Modules

Figure E.4: Determined Contribution Weight of Requirement Factors

251

Figure E.5: Process to Obtain the Contribution Weight to Prioritized the Requirements

Figure E.6: Determined Contribution Weight of Requirement Factors

252

253

APPENDIX F

Survey to Determine the Prioritized Regression Test Cases: This survey is performed

to obtain the weight to various factors with the objective to prioritize the regression test

cases on the basis of the surveyed factors. The factors are related to the past history of the

testing of the software. Every participant was asked to assign the positive weight in the

range of 0 to 1. The weight is assigned on the basis of the capability of the factors to

determine the maximum faults as earlier as possible. The Table F.1 shows the considered

factors.

Table F.1: Factors Related to the Past history of Testing

S.no. Factor Name

1 Severity of Bug

2 Capability of Detecting the Bug

3 Coverage of Code

4 Impact on business

5 Execution Time

The 85 Participations have participated in the survey. The Figure F.1 shows the analysis

of the received responses from the participants.

254

Figure F.1: Analysis of Received Responses from Participations

The Figure F.2 shows the determined weight of the factors by analyzing the received

responses from the participants.

Table F.2: Determined Weight of the Factors

S.no. Factor Name Factor Weight

1 Severity of Bug .25

2 Capability of Detecting the Bug .2

3 Coverage of Code .15

4 Impact on Business .3

5 Execution Time .1

255

BRIEF BIO DATA OF RESEARCH SCHOLOR

Vedpal is pursuing his Ph.D. in Computer Engineering from J. C. Bose University of

Science & Technology, YMCA, Faridabad, M. Tech (CE) From YMCA University of

Science & Technology, Faridabad in year 2012, MCA from MD University Rohtak in

year 2008. He has nine years of experience in teaching. Presently he is working as an

Assistant Professor in department of Computer Applications in J. C. Bose University of

Science & Technology, YMCA, Faridabad, Haryana, India. His Research Areas include

Software engineering, Software Testing and Object Technology.

256

257

LIST OF PUBLICATIONS OUT OF THESIS

(I) List of Published Papers in International Journals

S.

No

.

Title of Paper Name of Journal

where Published

No. Volume &

Issues

Year Pages

1 Object Oriented

Testing: Review and

Analysis". ISSN 2014

International

Journal of

Engineering

Research &

Informatics

2348 -

6481

 Vol. 1 Issue

6

2014

2 A Multi - Factor

coverage based Test

Case Prioritization

Technique for Object

Oriented Software”.

ISSN Number: 2015

International

Journal of

System and

Software

Engineering

2321-

6017

Volume 3

Issue 1

2015 18-23

3 A Fault – Severity

based Regression

Test Case

Prioritization

Technique for Object

Oriented Software”

ISSN : Nov 2016

International

Journal of

Computer

Science

Engineering

(IJCSE)

2319-

7323

Vol. 5 No.06 2016 312-326

4 Test Case

Prioritization

Technique for Object

Oriented Software

International

Journal of

Innovative

Computing,

ISSN

1349-

4198

Volume 14

Number 1

2018 341-354

258

Using Method

Complexity

Information and

Control(IJCIC)

5 A Technique for

Regression Testing of

Object Oriented

Software” ,

Asian Journal of

computer Science

and Technology

ISSN

2249 –

0701

Volume 7

number 1

2018 87-92

(II) List of Published Papers in National Journals

S.

No

.

Title of Paper Name of

Journal where

Published

No. Volume

& Issues

Year Pages

1 CORFOOS : Cost

Reduction

Framework for

Object Oriented

System

Journal of

Computer

Science

Engineering and

Software Testing

- Volume 1

Issue 1

2015 1-13

(III) List of Communicated Papers in International Journals

S.No. Title of Paper Name of

Journal

Present

Status

Year

1 A Structural Analysis

based Test Case

Prioritization Technique

for Object Oriented

Software

International

Arab Journal of

Information

Technology

Engineering and

Software Testing

Under

Review

2016

259

2 A Coupling – Analysis

based Test Case

Prioritization Technique

for Object Oriented

Software

International

Journal of

Innovative

Computing,

Information and

Control

Under

Review

2018

(IV) List of Published Papers in International Conferences

S.No. Title of Paper Name of Conference Year

1 A Hierarchical Test Case

Prioritization technique for

Object Oriented Software

International

Conference

Contemporary

Computing and

Informatics (IC3I) ,

Mysore, India (IEEE)

2014

2 Regression Test Case Selection

for Object Oriented Systems

Using OPDG and Slicing

Technique

2nd International

Conference on

Computing for

Sustainable Global

Development,

BVICAM, Delhi

(IEEE)

2015

260

3 A Multi - Factored Cost And

Code Coverage based Test Case

Prioritization for Object Oriented

Software

50th Golden Jubilee

Annual Convention

CSI, BVICAM, Delhi

(Proceeding Published

by Springer)

2015

