May 2019

M.Sc. (Mathematics) IV SEMESTER DIFFERENTIAL GEOMETRY (MATH17-119)

Time : 3 Hours]
[Max. Marks

Instructions :
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find the arc length of the curve $x=3 \cosh 2 t$, $y=3 \sinh 2 t, z=6 t$ from $t=0$ to $t=\pi$.
(b) Show that the principal normals at consecutive points do not intersect unless $\tau=0$.
(c) For the curve $x=3 t, y=3 t^{2}, z=2 t^{3}$, show that any plane meets in three points.
(d) What happens at the osculating plane at a point of Inflexion. Substantiate your answer.
(e) Find envelope of the curve $F=(x-t)^{2}+y^{2}-\frac{1}{2} t^{2}$.
(f) Define Developable surfaces.
(g) State Weingarton equations.
(h) Prove that $H \vec{n} \times \vec{n}_{1}=M \vec{r}_{1}-L \vec{r}_{2}$.
(i) State Dupin's Indicatrix.
(j) Define Asymptotic Lines.

PART-B

2. (a) Find the Curvature and Torsion to the curve

$$
\begin{equation*}
x=a \cos t, y=a \sin t, z=a t \cos \alpha \tag{8}
\end{equation*}
$$

(b) State and prove Serret-Frenet Laws.
3. (a) If s_{1} is the arc length of locus of the curve of curvature,
show that $\frac{d s_{1}}{d s}=\frac{\sqrt{\left(k^{2} \tau^{2}+k^{\prime 2}\right)}}{k^{2}}=\sqrt{\left[\left(\frac{\rho}{\sigma}\right)^{2}+\rho^{\prime 2}\right]}$.
(b) Find the involutes and evolutes of the circular helix.

