240403

May 2019
M.Sc. (Mathematics) IVth Semester

FLUID DYNAMICS

(MATH 17-120)
[Max. Marks : 75
Time: 3 Hours]

Instructions :
(i) It is compulsory to answer all the questions $(1.5$ marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define Stream line and write its differential equation.
(b) Define two-dimensional source and strength of source.
(c) Test whether the motion specified by $\vec{q}=\frac{k^{2}(x \hat{j}-y \hat{i})}{x^{2}+y^{2}}$

$$
\begin{equation*}
\text { (} k=\text { constant }) \text { is of potential kind. } \tag{1.5}
\end{equation*}
$$

(d) Write the Euler's equation of motion.
(e) What is the two-dimensional flow.
(1.5)
(f) Write the equation of continuity for two dimensional irrotational and incompressible flow.
(g) Find the stream function ψ for the given velocity potential $0=c x$, where c is a constant.
(h) What is the image of a three-dimensional sink $(-m)$ in $y z$ plane placed at point $\mathrm{P}(a, 0,0)$.
(i) Write Cauchy-Riemann equation in Polar form for $=0+i \psi$.
(1) State Weiss's sphere theorem.

PART-B

2. (a) Derive Euler's equation of continuity.
(b) Find the streamlines and the path of the particles for the three-dimensional velocity field :

$$
\begin{equation*}
u=\frac{x}{1+t} ; v=\frac{y}{1+t} ; w=\frac{z}{1+t} \tag{7}
\end{equation*}
$$

3. (a) Derive the general form of Bernoulli's Equation.
(b) If Σ is the solid boundary of a large spherical surface of radius R , containing fluid in motion and also enclosing one or more closed surfaces, then the mean value of the velocity potential of a steady irrotational
and incompressible flow is of the form $\bar{\Phi}=\left(\frac{M}{R}\right)+C$. Where M, C are constants, provided that the fluid extend to infinity and is rest there.
4. (a) Find the image of a three-dimensional source in a rigid infinite plane.
(b) Prove that for the complex potential $\tan ^{-1} z$, the stream lines and equi-potential are circles.
5. (a) State and prove Milne Thomson circle theorem. (8)
(b) Find the image of a two-dimensional doublet in a circle.
6. (a) State and prove Kelvin's theorem of circulation. (8)
(b) Find the image of a three-dimensional source in a solid sphere.
7. (a) Show that the ellipsoid

$$
\frac{x^{2}}{a^{2} k^{2} t^{2 n}}+k t^{n}\left[\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}\right]=1
$$

is a possible form of the boundary surface of a liquid.
(b) Show that in a two-dimensional irrotational motion, stream function and velocity potential both satisfy Laplace equation.

