Roll No.

Total Pages : 4

240202

May 2019 M.Sc. (Mathematics) II Semester LINEAR ALGEBRA (MATH17-108)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

D

- (i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- (ii) Answer any four questions from Part-B in detail.
- (iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- (a) Let V = P(t), the vector space of real polynomials.
 Determine, whether or not W is a subspace of V, where W consists of all polynomials with integral coefficients. (1.5)
 - (b) Let $T: V \to W$ be linear transformation, prove that kernel of T is subspace of V. (1.5)
 - (c) Suppose B is similar to A. Prove that B^n is similar to A^n . (1.5)

240202/80/111/190

[P.T.O. 20/5 (d) Obtain the matrix of the linear mapping T, where

 $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by

T(x, y) = (2x + y, x - y, x + 3y).(1.5)

(e) Show that the following matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$$

is not diagonalisable.

- (f) If λ is eigenvalue of square matrix A. Then, find the eigen value of hermitian matrix. (1.5)
- (g) Find the characteristics polynomial *c*(*t*) of the following matrix:

$$A = \begin{pmatrix} 2 & 5 & 1 & 1 \\ 1 & 4 & 2 & 2 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & 2 & 3 \end{pmatrix}$$
(1.5)

(1.5)

3.

- (h) Find k so that u = (1, 2, k, 3) and v = (3, k, 7, -5) in R⁴ are orthogonal. (1.5)
- (i) Let T be a normal operator. Prove that if $T(v) = \lambda_1 v$ and $T(w) = \lambda_2 w$, where $\lambda_1 \neq \lambda_2$, then $\langle v, w \rangle = 0$. (1.5)
- (j) Show that any operator T is the sum of a self-adjoint operator and a skew-adjoint operator. (1.5)

PART-B

- (a) Give an example of an infinite-dimensional vector space V(F) with subspace W such that V/W is a finitedimensional vector space. (5)
 - (b) Let V, W be finite-dimensional vector spaces over a field F. If $T: V \rightarrow W$ is a linear transformation, then dim V = Rank T + Nullity T. (10)
 - (a) If T and W are linear transformations on a finitedimensional vector space V such that T W = I, then show that T and W are invertible and T⁻¹ = W. Give an example that this is false when V is not finitedimensional.
 - (b) Let V be a finite-dimensional linear space and a≠0 in V, then there is an element f∈V^{*} such that f(a)≠0.
- 4. Let V be a finite-dimensional vector space over a field F and T: V → V be a linear transformation. If β and γ are two ordered bases of V, then there exists a non-singular matrix P over F such that [T]_γ = P⁻¹[T]_β P. Hence, also, deduce that, if T is a linear operator on R² defined by T(x, y) = (-y, x) and β = {α₁ = (1, 0), β₁ = (0, 1)} γ = {α₂ = (1, 2), β₂ = (1, -1)} be two ordered bases for R². Then, find a matrix P such that [T]_γ = P⁻¹[T]_β P. (15)

240202/80/111/190 3 [P.T.O.

240202/80/111/190

2

(a) Let m(t) be the minimal polynomial of an *n*-square matrix A. Show that the characteristic polynomial of 5. (b) Let λ be an eigen value of a linear operator $T: V \rightarrow V$. Then, the geometric multiplicity of), does not exceed its algebraic multiplicity. with Find all (non-equivalent) Jordan matrices (7) characteristics polynomial $c(t) = (t - 7)^{4}$. (a)6. (b) Prove that, for any vectors (8) $u, v \in V, < u, v >^2 \leq ||u||^2 ||v||^2.$ Let V be a Euclidean space. If a linear mapping $T: V \rightarrow V$ 7. is orthogonal on V, then for all $\alpha, \beta \in V$, $\langle \alpha, \beta \rangle = 0 \Rightarrow \langle T(\alpha), T(\beta) \rangle = 0,$ (i)

(15)

- (ii) $\| \mathbf{T}(\alpha) \| = \| \alpha \|$,
- (iii) $|| T(\alpha) T(\beta) || = || \alpha \beta ||,$
- (iv) T is one-to-one.

240202/80/111/190