240202

May 2019
M.Sc. (Mathematics) II Semester

LINEAR ALGEBRA

(MATH17-108)

Time : 3 Hours]

[Max. Marks : 75

Instructions :
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Let $\mathrm{V}=\mathrm{P}(t)$, the vector space of real polynomials. Determine, whether or not W is a subspace of V , where W consists of all polynomials with integral coefficients.
(b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear transformation, prove that kernel of T is subspace of V.
(c) Suppose B is similar to A . Prove that B^{n} is similar to A^{n}.
240202/80/111/190
(d) Obtain the matrix of the linear mapping T , where $T: R^{2} \rightarrow R^{3}$ is defined by

$$
\begin{equation*}
\mathrm{T}(x, y)=(2 x+y, x-y, x+3 y) \tag{1.5}
\end{equation*}
$$

(e) Show that the following matrix

$$
\mathrm{A}=\left(\begin{array}{ll}
1 & 0 \tag{1.5}\\
3 & 1
\end{array}\right)
$$

is not diagonalisable.
(f) If λ is eigenvalue of square matrix A. Then, find the eigen value of hermitian matrix.
(g) Find the characteristics polynomial $c(t)$ of the following matrix:

$$
A=\left(\begin{array}{rrrr}
2 & 5 & 1 & 1 \tag{1.5}\\
1 & 4 & 2 & 2 \\
0 & 0 & 6 & -5 \\
0 & 0 & 2 & 3
\end{array}\right)
$$

(h) Find k so that $u=(1,2, k, 3)$ and $v=(3, k, 7,-5)$ in R^{4} are orthogonal.
(i) Let T be a normal operator. Prove that if $\mathrm{T}(v)=\lambda_{1} v$ and $\mathrm{T}(w)=\lambda_{2} w$, where $\lambda_{1} \neq \lambda_{2}$, then $\langle v, w\rangle=0$.
(j) Show that any operator T is the sum of a self-adjoint operator and a skew-adjoint operator.

PART-B

2. (a) Give an example of an infinite-dimensional vector space $V(F)$ with subspace W such that V / W is a finitedimensional vector space.
(b) Let V, W be finite-dimensional vector spaces over a field F . If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation, then $\operatorname{dim} \mathrm{V}=$ Rank $\mathrm{T}+$ Nullity T .
3. (a) If T and W are linear transformations on a finitedimensional vector space V such that $T W=I$, then show that T and W are invertible and $\mathrm{T}^{-1}=\mathrm{W}$. Give an example that this is false when V is not finitedimensional.
(b) Let V be a finite-dimensional linear space and $a \neq 0$ in V , then there is an element $f \in \mathrm{~V}^{*}$ such that $f(a) \neq 0$.
4. Let V be a finite-dimensional vector space over a field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation. If β and γ are two ordered bases of V , then there exists a non-singular matrix P over F such that $[\mathrm{T}]_{\gamma}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P}$. Hence, also, deduce that, if T is a linear operator on R^{2} defined by $T(x, y)=(-y, x)$ and $\beta=\left\{\alpha_{1}=(1,0), \beta_{1}=(0\right.$,
1) $\}=\left\{\alpha_{2}=(1,2), \beta_{2}=(1,-1)\right\}$ be two ordered bases for
\mathbf{R}^{2}. Then, find a matrix P such that $[\mathrm{T}]_{\gamma}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P}$.

Let $m(t)$ be the minimal polynemital of an n-squate matrix A. Show that the characteristic polynemital of A divides $(m(t))^{n}$
(b) Let λ be an eigen value of alinear cperater $T: V \rightarrow V$

Then, the geometric muluplicity of 't does not exceed its algebraic muluplicity
(b) Prove that, for any vectors

$$
\begin{equation*}
u, v \in V,\langle u, v\rangle^{2} \leq\|u\|^{2}\|v\|^{2} \tag{8}
\end{equation*}
$$

7. Let V be a Euclidean space. If a linear mapping $T: V \rightarrow V$ is orthogonal on V, then for all $\alpha, \beta \in V$,
(i) $\langle\alpha, \beta\rangle=0 \Rightarrow\langle\mathrm{~T}(\alpha, \mathrm{~T}(\beta)\rangle=0$,
(ii) $\|\mathrm{T}(\alpha)\|=\|\alpha\|$,
(iii) $\|\mathrm{T}(\alpha)-\mathrm{T}(\beta)\|=\|\alpha-\beta\|$,
(iv) T is one-to-one.
