Roll No.

Total Pages : 3

DETACT PE

240401

May, 2019

M.Sc. - IV SEMESTER Functional Analysis (MATH-17-118)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1.	(a)	Define Banach space with $examp^{1\circ}$. (1.	5)
	(b)	Prove that every normed linear space is a metric space. (1.	ric .5)
	(c)	Define bounded linear functional. (1.	.5)
	(d)	State uniform boundedness theorem. (1	.5)
	(e)	Define weak convergence in l^p (1)	.5)
	(f)	State Closed Graph Theorem. (1)	.5)
	(g)	Prove or disprove that an inner product space is normed linear space. (1.	; a .5)
240401/80/111/100			0

(h) Let *H* be a Hilbert space and *x*, *y* be any two orthogonal vectors of *H*, then

$$||x + y||^{2} = ||x - y||^{2} = ||x||^{2} + ||y||^{2}.$$
(1.5)

- (i) Let H be a Hilbert space over C. A bounded linear operator T on H into itself is self adjoint iff (Tx, x) is real for each x in H.
 (1.5)
- (j) Explain bounded linear transformation with an example. (1.5)

PART-B

- 2. (a) Show that every norm is semi norm, but converse may not be true. (7)
 - (b) Prove that norm is a continuous function in a normed linear space.(8)
- 3. (a) Show that l^p is a Banach space, for $1 \le p < \infty$. (8)
 - (b) Every compact subset of a normed linear space is bounded. (7)
- 4. Let *H* be a Hilbert space over K (= R or C) and *T* be a bounded linear operator on *H* into itself. Then, there exists a unique bounded linear operator T^* on *H* into itself such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$, $\forall x, y \in H$. The operator T^* is called adjoint of *T*. (15)

240401/80/111/100

2

5. (a) Show that the Hilbert space is a weakly complete.

(7)

- (b) Let H be a Hilbert space, which is finite dimensional, then weak convergence, implies strong convergence. (8)
- 6. (a) T is a closed linear transformation iff its graph $T_G = \{(x,Tx) : x \in D \subseteq X\}$ is a closed subspace. (8)
 - (b) Let *M* is a closed linear subspace of a Hilbert space *H*, then $H = M + M^T$ and $M \cap M^T = \{0\}$. (7)
- 7. Let H be a Hilbert space over a field K (= R or C) and f be a bounded linear functional on H. Then there is a unique vector y in H such that f(x) =< x, y >, for all x ∈ H and || f ||=| y ||.

240401/80/111/100