240401

$$
\begin{gathered}
\text { May, } 2019 \\
\text { M.Sc. - IV SEMESTER } \\
\text { Functional Analysis (MATH-17-118) }
\end{gathered}
$$

Time : 3 Hours]
[Max. Marks : 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define Banach space with examplo
(b) Prove that every normed linear space is a metric space.
(c) Define bounded linear functional.
(d) State uniform boundedness theorem.
(e) Define weak convergence in l^{p}
(f) State Closed Graph Theorem.
(g) Prove or disprove that an inner product space is a normed linear space.
(h) Let H be a Hilbert space and x, y be any two orthogonal vectors of H, then

$$
\begin{equation*}
\|x+y\|^{2}=\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2} . \tag{1.5}
\end{equation*}
$$

(i) Let H be a Hilbert space over C. A bounded linear operator T on H into itself is self adjoint iff $\langle T x, x\rangle$ is real for each x in H.
(j) Explain bounded linear transformation with an example.

PART-B

2. (a) Show that every norm is semi norm, but converse may not be true.
(b) Prove that norm is a continuous function in a normed linear space.
3. (a) Show that l^{p} is a Banach space, for $1 \leq p<\infty$. (8)
(b) Every compact subset of a normed linear space is bounded.
4. Let H be a Hilbert space over $K(=R$ or $C)$ and T be a bounded linear operator on H into itself. Then, there exists a unique bounded linear operator T^{*} on H into itself such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \forall x, y \in H$. The operator T^{*} is called adjoint of T.
5. (a) Show that the Hilbert space is a weakly complete.
(7)
(b) Let H be a Hilbert space, which is finite dimensional, then weak convergence, implies strong convergence.
6. (a) T is a closed linear transformation iff its graph $T_{G}=\{(x, T x): x \in D \subseteq X\}$ is a closed subspace. (8)
(b) Let M is a closed linear subspace of a Hilbert space H, then $H=M+M^{T}$ and $M \cap M^{T}=\{0\}$.
7. Let H be a Hilbert space over a field $K(=R$ or $C)$ and f be a bounded linear functional on H. Then there is a unique vector y in H such that $f(x)=\langle x, y\rangle$, for all $x \in H$ and $\|f\|=\|y\|$.
